The Impact of Malicious Agents on the Enterprise Software Industry

By: Michael R. Galbreth
Department of Management Science
Moore School of Business
University of South Carolina
Columbia, SC 29208
U.S.A.
galbreth@moore.sc.edu

Mikhael Shor
Department of Economics
Owen Graduate School of Management
Vanderbilt University
Nashville, TN 37240
U.S.A.
mike.shor@owen.vanderbilt.edu

Appendix

Proofs

Proof of Proposition 1

The proof of this proposition follows from Lemmas 1 to 4 presented below.

Lemma 1. In equilibrium, (i) $n_{1}>0$ and (ii) $n_{2}=0 \Rightarrow n_{1}=1$

Proof. (i) Assume that $n_{1}=0$. If consumers in the neighborhood of Firm 1 are not purchasing from Firm 2, then any price $p_{1}<v_{1}$ will lead to positive sales and profits. Thus, assume that all consumers are purchasing from Firm 2. Firm 1 can make positive profits if there exists a $p_{1}>0$ such that $u_{1}(0)>u_{2}(0)$, which is equivalent to:

$$
v_{1}-p_{1}>v_{2}-p_{2}-t-q L \equiv p_{1}<v_{1}-v_{2}+p_{2}+t+q L
$$

Since $v_{1}>v_{2}, t>0$, and, in equilibrium, we must have $p_{2} \geq 0$, a $p_{1}>0$ satisfying the above condition must exist. (ii)

If consumers in the neighborhood of Firm 2 are not purchasing from Firm 1, then any price $p_{2}<v_{2}$ will lead to positive sales and profits.

Lemma 2. In equilibrium, when $p_{1}-p_{2} \leq\left(v_{1}-v_{2}\right)-t-q L$, the consumer adoption decision $i s: n_{1}=1, n_{2}=0$.

Proof.

$$
\begin{aligned}
\alpha_{12}^{*} & =\frac{1}{2}+\frac{1}{2 t}\left[\left(v_{1}-v_{2}\right)-\left(p_{1}-p_{2}\right)-q L\left(n_{1}^{e}-n_{2}^{e}\right)\right] \\
& \geq 1+\frac{q L}{2 t}\left(1-n_{1}^{e}+n_{2}^{e}\right) \\
& \geq 1 \\
\alpha_{10}^{*} & =\frac{1}{t}\left(v_{1}-p_{1}-q L n_{1}^{e}\right) \\
& \geq 1+\frac{v_{2}-p_{2}}{t}+\frac{q L}{t}\left(1-n_{1}^{e}\right) \\
& \geq 1
\end{aligned}
$$

Thus, by Equations (6) and (7), $n_{1}=1, n_{2}=0$ for any n_{1}^{e}, n_{2}^{e}.

Lemma 3. In equilibrium, when $\left(v_{1}-v_{2}\right)+p_{2}-t-q L<p_{1} \leq\left(v_{1}+v_{2}\right)-p_{2}-t-q L$, the consumer adoption decision satisfies: $n_{1}+n_{2}=1, n_{2}>0$.

Proof.

$$
\begin{aligned}
\alpha_{12}^{*} & =\frac{1}{2}+\frac{1}{2 t}\left[\left(v_{1}-v_{2}\right)-\left(p_{1}-p_{2}\right)-q L\left(n_{1}^{e}-n_{2}^{e}\right)\right] \\
& \geq 1-\frac{1}{t}\left(v_{2}-p_{2}\right)+\frac{q L}{2 t}\left(1-n_{1}^{e}+n_{2}^{e}\right) \\
& \geq 1-\frac{1}{t}\left(v_{2}-p_{2}-q L n_{2}^{e}\right) \\
& =\alpha_{20}^{*}
\end{aligned}
$$

where the second inequality arises because $n_{1}+n_{2} \leq 1$. Similar reasoning demonstrates that $\alpha_{12}^{*} \leq \alpha_{10}^{*}$. By Equations (6) and (7), $n_{1}+n_{2}=1$. To demonstrate that both firms have positive market share, we must show that $\alpha_{12}^{*}<1$. Assume that $\alpha_{12}^{*} \geq 1$. This implies that $n_{1}=1, n_{2}=0$:

$$
\begin{aligned}
\alpha_{12}^{*} & =\frac{1}{2}+\frac{1}{2 t}\left[\left(v_{1}-v_{2}\right)-\left(p_{1}-p_{2}\right)-q L\left(n_{1}^{e}-n_{2}^{e}\right)\right] \\
& <1+\frac{q L}{2 t}\left(1-n_{1}^{e}+n_{2}^{e}\right) \\
& =1
\end{aligned}
$$

which is a contradiction.

Lemma 4. In equilibrium, when $p_{1}+p_{2}>\left(v_{1}+v_{2}\right)-t-q L$, the consumer adoption decision satisfies: $n_{1}+n_{2}<1$ and $n_{2}>0$.

Proof. Reversing the proof for the first step of Lemma 3 provides: $\alpha_{10}^{*}<\alpha_{12}^{*}<\alpha_{20}^{*}$ which, by Equations (6) and (7), provides the first part of the lemma, that $n_{1}+n_{2}<1$. Further, $n_{2}=1-\alpha_{20}^{*}$. When $n_{2}=n_{2}^{e}$, we have $n_{2}=\frac{v_{2}-p_{2}}{t+q L}$. That $n_{2}>0$ follows from Firm 2's profit maximization since any $p_{2}<v_{2}$ results in positive profit.

Proof of Proposition 2

Prices follow from Lemma 5 below, and market shares follow from Equations (6) and (7).

Lemma 5. Firm i 's best response for any price of Firm j is given by

$$
\begin{aligned}
& p_{i}\left(p_{j}\right)=\left\{\begin{array}{rlc}
v_{i}-v_{j}+p_{j}-t-q L & \text { if } & q<\frac{v_{i}-\left(v_{j}-p_{j}\right)-3 t}{3 L} \\
\frac{1}{2}\left(v_{i}-v_{j}+p_{j}+t+q L\right) & \text { if } & \frac{v_{i}-\left(v_{j}-p_{j}\right)-3 t}{3 L} \leq q \leq \frac{v_{i}+3\left(v_{j}-p_{j}\right)-3 t}{3 L} \\
v_{i}+v_{j}-p_{j}-t-q L & \text { if } & \frac{v_{i}+3\left(v_{j}-p_{j}\right)-3 t}{3 L}<q \leq \frac{v_{i}+2\left(v_{j}-p_{j}\right)-2 t}{2 L} \\
\frac{1}{2} v_{1} & \text { if } & \frac{v_{i}+2\left(v_{j}-p_{j}\right)-2 t}{2 L}<q \\
p_{i}\left(p_{j}\right) \in \begin{array}{rll}
{[0, \infty)} & \text { if } & p_{j} \leq v_{j}-v_{i}-t-q L
\end{array}
\end{array} l \begin{array}{rl}
\end{array}\right.
\end{aligned}
$$

Proof. From Proposition 1 and Equations (6) and (7), we know that:

$$
n_{1}=\left\{\begin{array}{lll}
1 & \text { if } & p_{1}-p_{2} \leq\left(v_{1}-v_{2}\right)-t-q L \\
\frac{1}{2}+\frac{\left(v_{1}-p_{1}\right)-\left(v_{2}-p_{2}\right)}{2(t+q L)} & \text { if } \quad \begin{array}{l}
p_{1}-p_{2}>\left(v_{1}-v_{2}\right)-t-q L \\
\\
\\
\\
p_{1}+p_{2} \leq\left(v_{1}+v_{2}\right)-t-q L \\
\frac{v_{1}-p_{1}}{t+q L}
\end{array} \text { if } \quad p_{1}+p_{2}>\left(v_{1}+v_{2}\right)-t-q L
\end{array}\right.
$$

The corresponding derivatives of Firm 1's profit with respect to its price are:

$$
\frac{\partial \pi_{1}\left(p_{1}\right)}{\partial p_{1}}= \begin{cases}1 & \text { Region 1 } \\ \frac{p_{1} \leq v_{1}-\left(v_{2}-p_{2}\right)-t-q L}{} \frac{v_{1}-\left(v_{2}-p_{2}\right)+t+q L-2 p_{1}}{2(t+q L)} & \text { Region } 2 \\ & v_{1}-\left(v_{2}-p_{2}\right)-t-q L<p_{1} \leq v_{1}+\left(v_{2}-p_{2}\right)-t-q L \\ \frac{v_{1}-2 p_{1}}{t+q L} & \text { Region } 3 \\ & v_{1}+\left(v_{2}-p_{2}\right)-t-q L<p_{1} \leq v_{1}\end{cases}
$$

The regions are numbered for ease of discourse. Profit is increasing over Region 1. Inspection of the derivatives reveals four possibilities: (i) profit is decreasing in Regions 2 and 3, (ii) profit is single-peaked in the interior of Region 2 and decreasing in Region 3, (iii) profit is increasing in Region 2 and decreasing in Region 3, and (iv) profit is increasing in Region 2 and is singlepeaked in Region 3. These correspond to the first four cases in the lemma. In the fifth case, when $p_{j} \leq v_{j}-v_{i}-t-q L$, Firm i cannot obtain positive market share at any price. Best responses for Firm 2 are obtained analogously.

Proof of Theorems

The following lemma, defining conditions under which equilibrium profit is increasing in q, is used in the proofs of the theorems.

Lemma 6. For $j \in\{1,2\}$,

$$
\begin{array}{ll}
\text { (i) if } q \leq \frac{v_{1}-v_{2}-3 t}{3 L}, & \frac{d \pi_{j}^{*}}{d q} \leq 0 \\
\text { (ii) if } \frac{v_{1}-v_{2}-3 t}{3 L}<q \leq \frac{v_{1}+v_{2}-3 t}{3 L}, & \frac{d \pi_{j}^{*}}{d q}>0, \\
\text { (iii) if } \frac{v_{1}+v_{2}-2 t}{2 L}<q, & \frac{d \pi \pi_{j}^{*}}{d q}<0 . \\
\text { (iv) if } \frac{v_{1}+v_{2}-3 t}{3 L}<q \leq \frac{v_{1}+v_{2}-2 t}{2 L}, & \frac{d \pi_{j}^{*}}{d q}<0 \text { and } \frac{d \mathbb{I}_{j}^{*}}{d q}<0 .
\end{array}
$$

where $\bar{\pi}_{j}^{*}$ and $\underline{\pi}_{j}^{*}$ are the highest and lowest obtainable equilibrium profits for firm j.
Proof. Equilibrium profits, $\pi_{j}^{*}=n_{j} p_{j}$, are obtained from Proposition 2.
(i) Profits are given by $\pi_{1}^{*}=v_{1}-v_{2}-t-q L$ and $\pi_{2}^{*}=0$, which are nonincreasing in q.
(ii) Profits are given by: $\pi_{j}^{*}=\frac{1}{2}(t+q L)\left(1+\frac{v_{j}-v_{i}}{3(t+q L)}\right)^{2}, i \neq j$. Differentiating,

$$
\frac{d \pi_{j}^{*}}{d q}=\frac{1}{2} L\left[1-\left(\frac{v_{j}-v_{i}}{3(t+q L)}\right)^{2}\right]
$$

which is positive whenever: $q>\frac{v_{j}-v_{i}-3 t}{3 L}$
(iii) Profits are given by $\pi_{j}^{*}=\frac{v_{j}^{2}}{4(t+q l)}$ which is decreasing in q.
(iv) Profits are given by $\pi_{j}=\frac{\left(v_{j}-p_{j}\right) p_{j}}{t+q L}$. Differentiating with respect to q yields:

$$
\begin{equation*}
\frac{d \pi_{j}}{d q}=\left(\frac{v_{j}-2 p_{j}}{t+q L}\right) \frac{d p_{j}}{d q}-\frac{\left(v_{j}-p_{j}\right) L p_{j}}{(t+q L)^{2}} \tag{A-1}
\end{equation*}
$$

By Equation (9c), the set of prices that can yield either the highest or lowest equilibrium payoffs for Firm 1 is $p_{1} \in\left\{\frac{1}{2} v_{1}, \frac{2}{3} v_{1}, v_{1}+\frac{1}{3} v_{2}-t-q L, v_{1}+\frac{1}{2} v_{2}-t-q L\right\}$. In the first two cases, $\frac{d p_{1}}{d q}=0$ and Equation (A-1) is negative. In the last two cases, Equation (A-1) becomes:

$$
\frac{d \pi_{1}\left(\in\left\{\bar{\pi}_{1}^{*}, \pi_{1}^{*}\right\}\right)}{d q}=-\frac{L}{(t+q L)^{2}}\left[(t+q L)^{2}-\left(s v_{2}\right)^{2}-s v_{1} v_{2}\right]
$$

where $s \in\left\{\frac{1}{3}, \frac{1}{2}\right\}$. To complete the proof, we show that the part in brackets is positive.

$$
\begin{aligned}
(t+q L)^{2}-\left(s v_{2}\right)^{2}-s v_{1} v_{2} & \geq(t+q L)^{2}-\frac{v_{2}^{2}}{9}-\frac{v_{1} v_{2}}{3} \\
& >\left(\frac{v_{1}+v_{2}}{3}\right)^{2}-\frac{v_{2}^{2}}{9}-\frac{v_{1} v_{2}}{3} \\
& =\frac{v_{1}}{9}\left(v_{1}-v_{2}\right)>0
\end{aligned}
$$

Proof of Theorem 1. (i) The condition $t \leq \frac{1}{3}\left(v_{1}-v_{2}\right)-L$ implies that $q \leq \frac{v_{1}-v_{2}-3 t}{3 L}$ for all $q \in[0,1]$. By Lemma 6 , we have that $\frac{d \pi_{j}^{*}}{d q} \leq 0$.
(ii) The condition is equivalent to $\frac{v_{1}+v_{2}-2 t}{2 L}<0$ which implies that $q>\frac{v_{1}+v_{2}-2 t}{2 L}$. By Lemma 6 , we have that $\frac{d \pi_{j}^{*}}{d q}<0$.
(iii) The condition $t>\frac{1}{3}\left(v_{1}+v_{2}\right)$ implies that $q>\frac{v_{1}+v_{2}-3 t}{3 L}$ for all $q \in[0,1]$. By Lemma 6 , we have that $\bar{\pi}_{j}^{*}, \pi_{j}^{*}<0$.

Proof of Theorem 2. By Proposition 2:

$$
n_{2}=0 \text { if } q \leq \frac{v_{1}-v_{2}-3 t}{3 L} \quad \text { and } \quad n_{2}>0 \text { if } q>\frac{v_{1}-v_{2}-3 t}{3 L}
$$

For part (i) of the theorem, to have $n_{2}=0$ when $q=0$, we need $0 \leq \frac{v_{1}-v_{2}-3 t}{3 L}$. For part (ii), we require that $1>\frac{v_{1}-v_{2}-3 t}{3 L}$. These conditions are equivalent to:

$$
\frac{1}{3}\left(v_{1}-v_{2}\right)-L<t \leq \frac{1}{3}\left(v_{1}-v_{2}\right)
$$

Proof of Theorem 3. Define $\underline{q} \equiv \max \left[0, \frac{v_{1}-v_{2}-3 t}{3 L}\right]$ and $\bar{q} \equiv \min \left[1, \frac{v_{1}+v_{2}-3 t}{3 L}\right]$. Clearly, $\underline{q} \geq 0$ and $\bar{q} \leq 1$ and, by Lemma 6 , profit is increasing whenever $q \in(\underline{q}, \bar{q})$. To show that $\underline{q}<\bar{q}$ we require:

$$
\begin{array}{rrr}
1>\frac{v_{1}-v_{2}-3 t}{3 L} & \text { and } & 0<\frac{v_{1}+v_{2}-3 t}{3 L} \\
\equiv & \text { and } & t<\frac{1}{3}\left(v_{1}+v_{2}\right)
\end{array}
$$

which correspond to the conditions of part (i) of the theorem. The conditions in part (ii) imply

$$
\begin{array}{lll}
t \leq \frac{1}{3}\left(v_{1}+v_{2}\right)-L & \Rightarrow & \frac{v_{1}+v_{2}-3 t}{3 L} \geq 1 \\
t>\frac{1}{3}\left(v_{1}-v_{2}\right) & \Rightarrow & \frac{v_{1}-v_{2}-3 t}{3 L}<0
\end{array}
$$

Therefore, $\frac{v_{1}-v_{2}-3 t}{3 L}<q \leq \frac{v_{1}+v_{2}-3 t}{3 L}$ which, by Lemma 6 , implies profit is increasing for all q.

We next consider the generality of the above results, by specifying a quadratic attack probability function which includes linearity as a special case.
Corollary 3 (quadratic attack probability). Define

$$
\begin{equation*}
q\left(n_{j}\right) \equiv q \beta n_{j}+q(1-\beta) n_{j}^{2} \tag{A-2}
\end{equation*}
$$

Where $\beta \in[0,1]$. If
(i) $t>\frac{1}{3}\left(v_{1}-v_{2}\right)$, and
(ii) v_{1} and v_{2} are sufficiently large so that every consumer derives strictly positive utility in equilibrium when $q=0$,

Then, both firms obtain maximal profit at some $q>0$.
Proof. The consumer indifferent between Firm 1 and Firm 2 is found by solving:

$$
\begin{array}{ll}
& u_{1}\left(\alpha_{12}^{*}\right)=u_{2}\left(\alpha_{12}^{*}\right) \\
\equiv \quad & \alpha_{12}^{*}=\frac{1}{2}+\frac{\left(v_{1}-v_{2}\right)-\left(p_{1}-p_{2}\right)}{2 t}-\frac{q L}{2 t}\left[\beta\left(n_{1}^{e}-n_{2}^{e}\right)+(1-\beta)\left(\left(n_{1}^{e}\right)^{2}-\left(n_{2}^{e}\right)^{2}\right)\right] \tag{A-3}
\end{array}
$$

Since all consumers derive strictly positive utility when $q=0$, by assumption, we must have $n_{1}^{e}+n_{2}^{e}=1$ when q is sufficiently small. Equation (A-3) becomes:

$$
\begin{equation*}
\alpha_{12}^{*}=\frac{1}{2}+\frac{\left(v_{1}-v_{2}\right)-\left(p_{1}-p_{2}\right)}{2 t}-\frac{q L}{2 t}\left(2 n_{1}^{e}-1\right) \tag{A-4}
\end{equation*}
$$

In equilibrium, it must be the case that $\alpha_{12}^{*}=n_{1}=n_{1}^{e}$. Substituting into (A-4) yields

$$
\begin{equation*}
n_{1}=\frac{1}{2}+\frac{\left(v_{1}-v_{2}\right)-\left(p_{1}-p_{2}\right)}{2(t+q L)} \tag{A-5}
\end{equation*}
$$

For the above to have an interior solution $\left(0<n_{1}<1\right)$, we must have:

$$
\begin{equation*}
\left(v_{1}-v_{2}\right)-(t+q L)<p_{1}-p_{2}<\left(v_{1}-v_{2}\right)+(t+q L) \tag{A-6}
\end{equation*}
$$

We will confirm these conditions shortly. First, equilibrium prices are obtained by differentiating $\pi_{j}=p_{j} n_{j}$ for each firm and solving the simultaneous equations. This yields:

$$
\begin{equation*}
p_{j}=\frac{1}{3}\left(v_{j}-v_{i}\right)+t+q L, \quad i, j \in\{1,2\}, i \neq j \tag{A-7}
\end{equation*}
$$

The conditions in (A-6) are satisfied whenever $t+q L>\frac{1}{3}\left(v_{1}-v_{2}\right)$ which is true by assumption
(condition i). Combining (A-5) and (A-7) yields profits of:

$$
\pi_{j}=\frac{\left[t+q L+\frac{1}{3}\left(v_{1}-v_{2}\right)\right]^{2}}{2(t+q L)}
$$

which is increasing in q whenever $t>\frac{1}{3}\left(v_{1}-v_{2}\right)$.

Proof of Theorem 4. Condition (i) guarantees that the profit function is initially increasing in q. In particular, it implies that

$$
\frac{v_{1}-v_{2}-3 t}{3 L}<0 \leq \frac{v_{1}+v_{2}-3 t}{3 L}
$$

which, by Lemma 6 , implies that $\left.\frac{d \pi_{j}^{*}}{d q}\right|_{q=0}>0$.
If the profit function is initially nonincreasing, then there are two possibilities by Lemma 6. As q increases, either profit is initially nonincreasing, then increasing; or it is nonincreasing, then increasing, then decreasing:
(ii-a) nonincreasing-increasing: By Lemma 6, for profits to be nonincreasing when $q=0$ and increasing when $q=1$, the following conditions are required:

$$
\begin{array}{lll}
0 \leq \frac{v_{1}-v_{2}-3 t}{3 L} & \Rightarrow & t \leq \frac{1}{3}\left(v_{1}-v_{2}\right) \\
1>\frac{v_{1}-v_{2}-3 t}{3 L} & \Rightarrow & t>\frac{1}{3}\left(v_{1}-v_{2}\right)-L \\
1 \leq \frac{v_{1}+v_{2}-3 t}{3 L} & \Rightarrow & t \leq \frac{1}{3}\left(v_{1}+v_{2}\right)-L \tag{A-10}
\end{array}
$$

Firm 2's profit is 0 at $q=0$, thus Firm 2's profit is maximized at $q=1$. For Firm 1, maximum profit occurs either at $q=0$ or $q=1$ and, by Proposition 2 , these are given by:

$$
\begin{align*}
\left.\pi_{1}^{*}\right|_{q=0} & =v_{1}-v_{2}-t \tag{A-11}\\
\left.\pi_{1}^{*}\right|_{q=1} & =\frac{1}{2(t+L)}\left[\frac{1}{3}\left(v_{1}-v_{2}\right)+t+L\right]^{2} \tag{A-12}
\end{align*}
$$

Profit at $q=1$ is strictly greater than profit at $q=0$ when

$$
\begin{equation*}
L>2\left(\frac{1}{3} v_{1}-\frac{1}{3} v_{2}-t\right)+\sqrt{\left(\frac{1}{3} v_{1}-\frac{1}{3} v_{2}-t\right)\left(v_{1}-v_{2}-t\right)} \tag{A-13}
\end{equation*}
$$

Condition (A-9) is redundant as it is implied by (A-13). However, for both (A-13) and (A-10) to be satisfied, it must also be the case that

$$
\begin{equation*}
t>\frac{v_{1}^{2}-3 v_{2}^{2}}{3\left(v_{1}+v_{2}\right)} \tag{A-14}
\end{equation*}
$$

Combining these conditions:

$$
\begin{gather*}
\frac{1}{3}\left(v_{1}-v_{2}\right) \geq t>\frac{v_{1}^{2}-3 v_{2}^{2}}{3\left(v_{1}+v_{2}\right)} \\
\frac{1}{3}\left(v_{1}+v_{2}\right)-t \geq L>2\left(\frac{1}{3} v_{1}-\frac{1}{3} v_{2}-t\right)+\sqrt{\left(\frac{1}{3} v_{1}-\frac{1}{3} v_{2}-t\right)\left(v_{1}-v_{2}-t\right)} \tag{A-15}
\end{gather*}
$$

(ii-b) nonincreasing-increasing-decreasing: By Lemma 6, we require:

$$
\begin{array}{lll}
0 \leq \frac{v_{1}-v_{2}-3 t}{3 L} & \Rightarrow & t \leq \frac{1}{3}\left(v_{1}-v_{2}\right) \\
1>\frac{v_{1}+v_{2}-3 t}{3 L} & \Rightarrow & t>\frac{1}{3}\left(v_{1}+v_{2}\right)-L \tag{A-17}
\end{array}
$$

Maximum profit can occur either at $q=0$ or at $q=\frac{v_{1}+v_{2}-3 t}{3 L}$ which is the point above which profit is again decreasing in q. Firm 1's profit is given by:

$$
\begin{equation*}
\left.\pi_{1}^{*}\right|_{q=\frac{v_{1}+v_{2}-3 t}{}} ^{3 L}=\frac{2 v_{1}^{2}}{3\left(v_{1}+v_{2}\right)} \tag{A-18}
\end{equation*}
$$

This profit exceeds the profit at $q=0$ given by $(\mathrm{A}-11)$ if $t>\frac{v_{1}^{2}-3 v_{2}^{2}}{3\left(v_{1}+v_{2}\right)}$ which is precisely the condition in (A-14). Combining these conditions, we have:

$$
\begin{gather*}
\frac{1}{3}\left(v_{1}-v_{2}\right) \geq t>\frac{v_{1}^{2}-3 v_{2}^{2}}{3\left(v_{1}+v_{2}\right)} \tag{A-19}\\
L>\frac{1}{3}\left(v_{1}+v_{2}\right)-t
\end{gather*}
$$

Taking the union of parameter ranges in (A-15) and (A-19) yields condition (ii) in the theorem.

Proof of Theorem 5. We solve for the subgame perfect equilibrium. The consumer indifferent between Firm 1 and Firm 2 is given by

$$
\begin{equation*}
\alpha_{12}^{*}=\frac{1}{2}+\frac{1}{2 t}\left[\left(v_{1}-v_{2}\right)-\left(p_{1}-p_{2}\right)-\left(q_{1} n_{1}^{e}-q_{2} n_{2}^{e}\right) L\right] \tag{A-20}
\end{equation*}
$$

Following steps similar to Propositions 1 and 2, under the conditions in the theorem, we have $n_{1}>0, n_{2}>0, n_{1}+n_{2}=1$ for all q_{1} and q_{2}. Since, in equilibrium, $n_{i}^{e}=n_{i}$, we have

$$
\begin{equation*}
n_{1}=\frac{\left(v_{1}-v_{2}\right)-\left(p_{1}-p_{2}\right)+t+q_{2} L}{2 t+\left(q_{1}+q_{2}\right) L} \tag{A-21}
\end{equation*}
$$

For given q_{1} and q_{2}, firms maximize $\pi_{i}\left(p_{i}\right)=p_{i} n_{i}$ which yields the first order conditions:

$$
\begin{equation*}
p_{i}=\frac{1}{2}\left(v_{i}-v_{j}+p_{j}+t+q_{j} L\right) \quad i, j \in\{1,2\}, i \neq j \tag{A-22}
\end{equation*}
$$

From these, the equilibrium prices and market shares are given by:

$$
\begin{align*}
p_{1} & =\frac{1}{3}\left(v_{1}-v_{2}\right)+t+\frac{1}{3}\left(q_{1}+2 q_{2}\right) L & p_{2} & =\frac{1}{3}\left(v_{2}-v_{1}\right)+t+\frac{1}{3}\left(q_{2}+2 q_{1}\right) L \tag{A-23}\\
n_{1} & =\frac{\left(v_{1}-v_{2}\right)+3 t+\left(q_{1}+2 q_{2}\right) L}{6 t+3\left(q_{1}+q_{2}\right) L} & n_{2} & =1-n_{1} \tag{A-24}
\end{align*}
$$

In the first stage, firms select q_{i} to maximize $p_{i} n_{i}-c_{i}\left(q_{i}\right)$. For $i, j \in\{1,2\}, i \neq j$, profit as a function of q_{i}, q_{j} is given by:

$$
\begin{equation*}
\pi_{i}\left(q_{i}, q_{j}\right)=\frac{\left(\left(v_{i}-v_{j}\right)+3 t+\left(q_{i}+2 q_{j}\right) L\right)^{2}}{9\left(2 t+\left(q_{i}+q_{j}\right) L\right)}-c_{i}\left(q_{i}\right) \tag{A-25}
\end{equation*}
$$

Taking the derivative with respect to q_{i} yields:

$$
\begin{equation*}
\frac{d \pi_{i}\left(q_{i}, q_{j}\right)}{d q_{i}}=\left[v_{j}-v_{i}+t+q_{i} L\right]\left(\frac{L\left(v_{i}-v_{j}+3 t+\left(q_{i}+2 q_{j}\right) L\right)}{9\left(2 t+\left(q_{i}+q_{j}\right) L\right)^{2}}\right)-c_{i}^{\prime}\left(q_{i}\right) \tag{A-26}
\end{equation*}
$$

The fraction term is strictly positive since $t>\frac{1}{3}\left(v_{1}-v_{2}\right)$. Also, $c_{i}^{\prime}\left(q_{i}\right) \leq 0$.
(i) For an equilibrium to satisfy $q_{1}=q_{2}=0$, it must be the case that the derivative of each firm's profit function at $q_{1}=q_{2}=0$ must be non-positive. Consider firm 2. The expression in the brackets becomes $\left[v_{1}-v_{2}+t\right]>0$. Therefore, the derivative is positive.
(ii) For $q_{i}=1$ to be a dominant strategy, the derivative of profit must be increasing for all q_{i}, q_{j}. This requires that the expression in the square brackets be positive, which is true whenever $t>v_{1}-v_{2}$.

Proof of Theorem 6. The consumer indifferent between Firms 1 and $2\left(u_{1}=u_{2}\right)$ is given by

$$
\begin{equation*}
\alpha_{12}^{*}=\frac{1}{\Delta}\left[\left(p_{1}-p_{2}\right)+q L\left(n_{1}^{e}-n_{2}^{e}\right)\right] \tag{A-27}
\end{equation*}
$$

By assumption, $n_{1}+n_{2}=1$ and therefore $n_{1}=1-\alpha_{12}^{*}$. In equilibrium, $n_{j}^{e}=n_{j}$, implying

$$
\begin{equation*}
n_{1}=\frac{\Delta-\left(p_{1}-p_{2}\right)+q L}{\Delta+2 q L} \tag{A-28}
\end{equation*}
$$

Maximizing each firm's profit, $n_{j} p_{j}$, with respect to p_{j} and substituting yields the expressions in (12) and (13). As both p_{2} and n_{2} are increasing in q, the result holds for Firm 2. For Firm 1, profits are given by $p_{1} n_{1}=\frac{1}{9} \frac{(2 \Delta+3 q L)^{2}}{\Delta+2 q L}$. Differentiating with respect to q yields the result.

