Price Effects in Online Product Reviews: An Analytical Model and Empirical Analysis

By: Xinxin Li
School of Business
University of Connecticut
2100 Hillside Road U1041
Storrs, CT 06279
U.S.A.
xli@business.uconn.edu

Lorin M. Hitt
The Wharton School
University of Pennsylvania
3730 Walnut Street, 500 JMHH
Philadelphia, PA 19104-6381
U.S.A.

Ihitt@wharton.upenn.edu

Appendix A

Derivation of Optimal Price Functions for the Monopoly Setting

We apply backward induction to derive optimal price functions. In the second period, given first period price p_{l}, the firm selects second period price $p_{2}\left(p_{2}<\operatorname{Max}\{q, R\}\right)$ to maximize its second period profit:

$$
\pi_{2}=n\left((1-a) p_{2} \operatorname{Max}\left\{0, \frac{q-p_{2}}{t}\right\}+a p_{2} \operatorname{Max}\left\{0, \frac{\operatorname{Max}\left\{0, \operatorname{Min}\left\{1, q-b\left(p_{1}-\frac{q}{2}\right)\right\}\right\}-p_{2}}{t}\right\}\right)
$$

The profit function can be reduced to four possibilities based on the value of p_{l} :

$$
\pi_{2}=\left\{\begin{array}{cl}
n\left((1-a) p_{2} \operatorname{Max}\left\{0, \frac{q-p_{2}}{t}\right\}+a p_{2} \frac{1-p_{2}}{t}\right) & \text { if } 0<p_{1}<\frac{(2+b) q-2}{2 b} \\
n\left((1-a) p_{2} \operatorname{Max}\left\{0, \frac{q-p_{2}}{t}\right\}+a p_{2} \frac{q-b\left(p_{1}-\frac{q}{2}\right)-p_{2}}{t}\right) & \text { if } \frac{(2+b) q-2}{2 b} \leq p_{1}<\frac{q}{2} \\
n\left((1-a) p_{2} \frac{q-p_{2}}{t}+a p_{2} \operatorname{Max}\left\{0, \frac{q-b\left(p_{1}-\frac{q}{2}\right)-p_{2}}{t}\right\}\right) & \text { if } \frac{q}{2} \leq p_{1} \leq \frac{(2+b) q}{2 b} \\
n\left((1-a) p_{2} \frac{q-p_{2}}{t}\right) & \text { if } \frac{(2+b) q}{2 b}<p_{1}<q^{\varepsilon}
\end{array}\right.
$$

By maximizing profit in each of the four cases, we can derive the optimal second period price p_{2} as a function of first period price p_{l} :

$$
p_{2}^{*}\left(p_{1}\right)=\left\{\begin{array}{cc}
\frac{a+(1-a) q}{2} & \text { if } 0<p_{1}<\frac{(2+b) q-2}{2 b} \\
\frac{q}{2}+\frac{a b\left(q-2 p_{1}^{*}\right)}{4} & \text { if } \frac{(2+b) q-2}{2 b}<p_{1}<\frac{(2-2 \sqrt{1-a}+a b) q}{2 a b} \\
\frac{q}{2} & \text { if } \frac{(2-2 \sqrt{1-a}+a b) q}{2 a b}<p_{1}<q^{8}
\end{array}\right.
$$

The corresponding second period profit as a function of p_{I} is

$$
\pi_{2}^{*}\left(p_{1}\right)=\left\{\begin{array}{cc}
\frac{n(a+(1-a) q)^{2}}{4 t} & \text { if } 0<p_{1}<\frac{(2+b) q-2}{2 b} \\
\frac{n\left(2 q+a b\left(q-2 p_{1}\right)\right)^{2}}{16 t} & \text { if } \frac{(2+b) q-2}{2 b}<p_{1}<\frac{(2-2 \sqrt{1-a}+a b) q}{2 a b} \\
\frac{n(1-a) q^{2}}{4 t} & \text { if } \frac{(2-2 \sqrt{1-a}+a b) q}{2 a b}<p_{1}<q^{e}
\end{array}\right.
$$

Back in the first period, given $\pi_{2}^{*}\left(p_{1}\right)$, the firm selects a first period price $p_{1}\left(p_{1}<q^{e}\right)$ to maximize its total profit in both periods: $\frac{p_{1}\left(q^{e}-p_{1}\right)}{t}+\pi_{2}^{*}\left(p_{1}\right)$. By comparing optimal profit in different ranges of p_{l}, we can derive the optimal first period price for different values of q :

$$
p_{1}^{*}=\left\{\begin{array}{cc}
\frac{q^{\varepsilon}}{2} & \text { if } 0<q \leq \bar{Q}_{1} \text { or } \frac{2+b q^{8}}{2+b} \leq q<1 \\
\operatorname{Max}\left\{0, \frac{(2+b) q-2}{2 b}\right\} & \text { if } \operatorname{Max}\left\{\bar{Q}_{1}, \operatorname{Min}\left\{\bar{Q}_{2}, \frac{4 q^{\varepsilon}}{2 a b n+a^{2} b^{2} n}\right\}\right\} \leq q<\frac{2+b q^{e}}{2+b} \\
\frac{q^{\varepsilon}}{2}-\frac{a b\left((2+a b) q-a b q^{\varepsilon}\right) n}{2\left(4-a^{2} b^{2} n\right)} & \text { if } \bar{Q}_{1}<q<\operatorname{Max}\left\{\bar{Q}_{1}, \operatorname{Min}\left\{\bar{Q}_{2}, \frac{4 q^{\varepsilon}}{2 a b n+a^{2} b^{2} n}\right\}\right\}
\end{array}\right.
$$

Combining p_{1}^{*} and $p_{2}^{*}\left(p_{1}\right)$, we can derive that $p_{2}^{*}=\left\{\begin{array}{cc}\frac{a+(1-a) q}{2} & \text { if } \operatorname{Max}\left\{\bar{Q}_{2}, \frac{2}{2+b}\right\}<q<1 \\ \frac{q}{2}+\frac{a b\left(q-2 p_{1}^{*}\right)}{4} & \text { if } \bar{Q}_{1}<q<\operatorname{Max}\left\{\bar{Q}_{2}, \frac{2}{2+b}\right\} . \\ \frac{q}{2} & \text { if } 0<q<\bar{Q}_{1}\end{array}\right.$.

Appendix B

Derivation of Optimal Price Functions for the Duopoly Setting

We first utilize the case of $q_{1}=\frac{1}{2}$ to explain in detail how to derive equilibrium prices and then follow the same procedure to solve equilibria for the other two cases ($q_{1}=1$ and $q_{1}=0$).

We apply backward induction to derive optimal price functions. In the second period, given the first period prices, p_{11} and $p_{21}\left(p_{\mathrm{j} 1}<q_{\mathrm{j}}^{\mathrm{e}}=\frac{1}{2}\right)$, the ratings of the two products are $R_{1}=\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3-4 p_{11}}{4}\right\}\right\}$ and $R_{2}=\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}$. Given $a=1, b=1, n=3, t=\frac{1}{6}$, and $q_{1}^{e}=q_{2}^{e}=\frac{1}{2}$, if all second-period consumers purchase from one of the two firms, the second period profits are $\pi_{12}=3\left(p_{12} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,3\left(R_{1}-R_{2}-p_{12}+p_{22}+\frac{1}{6}\right)\right\}\right\}\right)$ and $\pi_{22}=3\left(p_{22} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,3\left(R_{2}-R_{1}-p_{22}+p_{12}+\frac{1}{6}\right)\right\}\right\}\right)$. If some second-period consumers expect negative utility from both firms and do not buy from either firm, the profit functions are $\pi_{12}=3\left(p_{12} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,6\left(R_{1}-p_{12}\right)\right\}\right\}\right)$ and $\pi_{22}=3\left(p_{22} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,6\left(R_{2}-p_{22}\right)\right\}\right\}\right)$. Then back in the first period, firms select p_{11} and p_{21} to maximize their total profits in both periods: $\pi_{1}=3 p_{11} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,-p_{11}+p_{21}+\frac{1}{6}\right\}\right\}+\pi_{12}^{*}$ and
$\pi_{2}=3 p_{21} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,-p_{21}+p_{11}+\frac{1}{6}\right\}\right\}+\pi_{22}^{*}$. It can be proved that in this scenario all of the second-period consumers will purchase one of the two products in equilibrium. Thus, firms' second period profit functions are:

$$
\begin{aligned}
& \pi_{12}=3\left(p_{12} \operatorname{Min}\left\{1,3\left(\frac{3-4 p_{11}}{4}-\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}-p_{12}+p_{22}+\frac{1}{6}\right)\right\}\right), \\
& \pi_{22}=3\left(p_{22} \operatorname{Max}\left\{0,3\left(\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}-\frac{3-4 p_{11}}{2}-p_{22}+p_{12}+\frac{1}{6}\right)\right\}\right) .
\end{aligned}
$$

We can then derive the optimal second period prices as functions of the first period prices:

$$
\begin{aligned}
& p_{12}^{*}\left(p_{11}, p_{21}\right)=\left\{\begin{array}{cl}
0 & \text { if } p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}>\frac{5}{4} \\
\frac{5-4\left(p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}\right)}{3} & \text { if } \frac{1}{4}<p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}<\frac{5}{4}, \\
\frac{7-12\left(p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}\right)}{12} & \text { if } p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}<\frac{1}{4}
\end{array}\right. \\
& p_{22}^{*}\left(p_{11}, p_{21}\right)=\left\{\begin{array}{cl}
\frac{-11-12\left(p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}\right)}{12} & \text { if } p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}>\frac{5}{4} \\
\frac{-1+4\left(p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}\right)}{2} & \text { if } \frac{1}{4}<p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}<\frac{5}{4} . \\
0 & \text { if } p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}<\frac{1}{4}
\end{array}\right.
\end{aligned}
$$

The corresponding second period profits as functions of the first period prices thus are:

$$
\begin{aligned}
& \pi_{12}^{*}\left(p_{11}, p_{21}\right)=\left\{\begin{array}{cl}
0 & \text { if } p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}>\frac{5}{4} \\
\frac{\left(\frac{\left.5-4 p_{11}-\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}\right)^{2}}{2}\right.}{3} & \text { if } \frac{1}{4}<p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}<\frac{5}{4}, \\
\frac{7-12\left(p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{\left.3 q_{2}-2 p_{21}\right\}}{2}\right\}\right)\right.}{4} & \text { if } p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}<\frac{1}{4}
\end{array}\right. \\
& \pi_{22}^{*}\left(p_{11}, p_{21}\right)=\left\{\begin{array}{cl}
\frac{-11-12\left(p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}-2 p_{21}}{2}\right\}\right\}\right)}{4} & \text { if } p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}>\frac{5}{4} \\
\frac{\left(1-\operatorname{sp} p_{11}-\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{\left.3 q_{2}-2 p_{21}\right\}}{2}\right\}\right)\right)^{2}}{3} & \text { if } \frac{1}{4}<p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}<\frac{5}{4} . \\
0 & \text { if } p_{11}+\operatorname{Min}\left\{1, \operatorname{Max}\left\{0, \frac{3 q_{2}}{2}-p_{21}\right\}\right\}<\frac{1}{4}
\end{array}\right.
\end{aligned}
$$

Then back in the first period, firms select the first period prices to maximize their total profits in both periods:

$$
\begin{aligned}
& \pi_{1}=3 p_{11} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,-p_{11}+p_{21}+\frac{1}{6}\right\}\right\}+\pi_{12}^{*}\left(p_{11}, p_{21}\right) \\
& \pi_{2}=3 p_{21} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,-p_{21}+p_{11}+\frac{1}{6}\right\}\right\}+\pi_{22}^{*}\left(p_{11}, p_{21}\right) .
\end{aligned}
$$

By comparing profits in different ranges of p_{11} and p_{21}, we can derive the optimal first period prices for different values of q_{2} :

$$
p_{11}^{*}=\left\{\begin{array}{cl}
\frac{1}{10} & \text { if } \frac{34}{45}<q_{2}<1 \\
\frac{3\left(3 q_{2}-2\right)}{8} & \text { if } \frac{2}{3}<q_{2}<\frac{34}{45}, p_{21}^{*} \\
0 & \text { if } 0<q_{2}<\frac{2}{3}
\end{array}=\left\{\begin{array}{cl}
\frac{2}{15} & \text { if } \frac{34}{45}<q_{2}<1 \\
\frac{3 q_{2}-2}{2} & \text { if } \frac{2}{3}<q_{2}<\frac{34}{45} \\
0 & \text { if } \frac{1}{3}<q_{2}<\frac{2}{3} \\
\frac{-3 q_{2}+1}{4} & \text { if } \frac{2}{9}<q_{2}<\frac{1}{3} \\
\frac{1}{12} & \text { if } 0<q_{2}<\frac{2}{9}
\end{array} .\right.\right.
$$

Combining $p_{11}^{*}, p_{21}^{*}, p_{12}^{*}\left(p_{11}, p_{21}\right)$, and $p_{22}^{*}\left(p_{11}, p_{21}\right)$, we can derive that:

$$
p_{12}^{*}=\left\{\begin{array}{cl}
\frac{1}{20} & \text { if } \frac{34}{45}<q_{2}<1 \\
\frac{8-9 q_{2}}{24} & \text { if } \frac{2}{3}<q_{2}<\frac{34}{45} \\
\frac{5-6 q_{2}}{12} & \text { if } \frac{1}{3}<q_{2}<\frac{2}{3} \\
\frac{1}{2}-\frac{3 q_{2}}{4} & \text { if } \frac{2}{9}<q_{2}<\frac{1}{3} \\
\frac{2}{3}-\frac{3 q_{2}}{2} & \text { if } \frac{1}{18}<q_{2}<\frac{2}{9} \\
\frac{7}{12} & \text { if } 0<q_{2}<\frac{1}{18}
\end{array}=\left\{\begin{array}{cl}
\frac{17}{60} & \text { if } \frac{34}{45}<q_{2}<1 \\
\frac{3 q_{2}}{8} & \text { if } \frac{2}{3}<q_{2}<\frac{34}{45} \\
\frac{6 q_{2}-1}{12} & \text { if } \frac{1}{3}<q_{2}<\frac{2}{3} \\
-\frac{1}{6}+\frac{3 q_{2}}{4} & \text { if } \frac{2}{9}<q_{2}<\frac{1}{3} \\
0 & \text { if } 0<q_{2}<\frac{2}{9}
\end{array} .\right.\right.
$$

Following similar procedure, we can derive the optimal price functions for $q_{1}=1$:

$$
\begin{aligned}
& p_{11}^{*}=\left\{\begin{array}{cl}
\frac{1}{6} & \text { if } \frac{7}{9}<q_{2}<1 \\
\frac{9 q_{2}-5}{12} & \text { if } \frac{2}{3}<q_{2}<\frac{7}{9} \\
\frac{1}{12} & \text { if } \frac{7}{12}<q_{2}<\frac{2}{3} \\
\frac{13-18 q_{2}}{30} & \text { if } \frac{4}{9}<q_{2}<\frac{7}{12} \\
\frac{1}{6} & \text { if } 0<q_{2}<\frac{4}{9}
\end{array}, p_{21}^{*}\right.
\end{aligned}=\left\{\begin{array}{cl}
\frac{1}{6} & \text { if } \frac{7}{9}<q_{2}<1 \\
\frac{3 q_{2}-2}{2} & \text { if } \frac{2}{3}<q_{2}<\frac{7}{9} \\
0 & \text { if } \frac{7}{12}<q_{2}<\frac{2}{3} \\
\frac{7-12 q_{2}}{10} & \text { if } \frac{4}{9}<q_{2}<\frac{7}{12} \\
\frac{1}{6} & \text { if } 0<q_{2}<\frac{4}{9}
\end{array} .\right.
$$

Similarly, the optimal price functions for $q_{1}=0$ are

$$
\begin{aligned}
& p_{11}^{*}=\left\{\begin{array}{ll}
\frac{1}{6} & \text { if } \frac{7}{9}<q_{2}<1 \\
\frac{9 q_{2}-5}{12} & \text { if } \frac{2}{3}<q_{2}<\frac{7}{9} \\
\frac{1}{12} & \text { if } \frac{2}{9 \sqrt{6}}<q_{2}<\frac{2}{3} \\
\frac{1}{6} & \text { if } 0<p_{21}^{*}<\frac{2}{9 \sqrt{6}}
\end{array}=\left\{\begin{array}{cl}
\frac{1}{6} & \text { if } \frac{7}{9}<q_{2}<1 \\
\frac{3 q_{2}-2}{2} & \text { if } \frac{2}{3}<q_{2}<\frac{7}{9} \\
0 & \text { if } \frac{2}{9 \sqrt{6}}<q_{2}<\frac{2}{3} \\
\frac{1}{6} & \text { if } 0<q_{2}<\frac{2}{9 \sqrt{6}}
\end{array}\right.\right. \\
& p_{12}^{*}=0, p_{22}^{*}= \begin{cases}\frac{5}{6} & \text { if } \frac{2}{3}<q_{2}<1 \\
\frac{3 q_{2}}{2}-\frac{1}{6} & \text { if } \frac{2}{9}<q_{2}<\frac{2}{3} \\
\frac{3 q_{2}}{4} & \text { if } \frac{2}{9 \sqrt{6}}<q_{2}<\frac{2}{9} \\
0 & \text { if } 0<q_{2}<\frac{2}{9 \sqrt{6}}\end{cases}
\end{aligned}
$$

In the benchmark scenario, the firms select p_{11}, p_{21}, p_{12}, and p_{22} to maximize their total profits:

$$
\begin{aligned}
& \pi_{1}=3 p_{11} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,-p_{11}+p_{21}+\frac{1}{6}\right\}\right\}+3\left(p_{12} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,3\left(q_{1}-q_{2}-p_{12}+p_{22}+\frac{1}{6}\right)\right\}\right\}\right), \\
& \pi_{2}=3 p_{21} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,-p_{21}+p_{11}+\frac{1}{6}\right\}\right\}+3\left(p_{22} \operatorname{Min}\left\{1, \operatorname{Max}\left\{0,3\left(q_{2}-q_{1}=p_{22}+p_{12}+\frac{1}{6}\right)\right\}\right\}\right) .
\end{aligned}
$$

It can be shown that the optimal first period prices are both $\frac{1}{6}$, the second period prices are:
(1) If $q_{1}=1, p_{21}^{*}=\left\{\begin{array}{cl}\frac{1}{6}+\frac{1-q_{2}}{3} & \text { if } \frac{1}{2}<q_{2}<1 \\ \frac{5}{6}-q_{2} & \text { if } 0<q_{2}<\frac{1}{2}\end{array}, p_{22}^{*}=\left\{\begin{array}{cl}\frac{1}{6}-\frac{1-q_{2}}{3} & \text { if } \frac{1}{2}<q_{2}<1 \\ 0 & \text { if } 0<q_{2}<\frac{1}{2}\end{array}\right.\right.$.
(2) If $q_{1}=\frac{1}{2}, p_{21}^{*}=\frac{1}{6}+\frac{\frac{1}{2}-q_{2}}{3}, p_{22}^{*}=\frac{1}{6}-\frac{\frac{1}{2}-q_{2}}{3}$.
(3) If $q_{1}=0, p_{21}^{*}=0, p_{22}^{*}=\left\{\begin{array}{cl}\frac{q_{2}}{2} & \text { if } 0<q_{2}<\frac{1}{3} \\ q_{2}-\frac{1}{6} & \text { if } \frac{1}{3}<q_{2}<1\end{array}\right.$.

