Correlated Failures, Diversification, and Information Security Risk Management

Pei-yu Chen
Department of Management Information Systems, Fox School of Business and Management, Temple University, 1801 N. Broad Street, Philadelphia, PA 19122 U.S.A. \{pychen@temple.edu\}

Gaurav Kataria
Booz \& Co., 127 Public Squire, Suite 5300, Cleveland, OH 44114 U.S.A. \{gkataria@google.com\}

Ramayya Krishnan
School of Information Systems and Management, The Heinz College, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 U.S.A. $\{r k 2 x @ c m u . e d u\}$

Appendix A

Proofs

Proof of Observation 1

$$
\begin{aligned}
\frac{\partial \rho_{12}}{\partial c} & =\frac{1+m-2 c}{\sqrt{m(m-c)}}+1 / 2 \frac{((c(1-m-c)=m) m}{(m(m-c))^{3 / 2}} \\
& =1 / 2 \frac{2 m+1-3 c}{\sqrt{-m(-m+c)}} \\
& >0 \because m>c \& c<1
\end{aligned}
$$

Since $\frac{\partial \rho}{\partial c}>0$, increase in shared vulnerabilities increases correlation of failure. QED.

Proof of Proposition 1

Loss distribution under diversity second order stochastically dominates homogeneity if the cumulative area under its cumulative distribution function (CDF) is lower than under homogeneity (see Figure A1), that is,

$$
\begin{gathered}
2 \times P_{H}(2 F)>2 \times P_{D}(2 F), \text { and } \\
2 \times P_{H}(2 F)+1 \times\left[P_{H}(2 F)+P_{H}(1 F)\right]>2 \times P_{D}(2 F)+1 \times\left[P_{D}(2 F)+P_{D}(1 F)\right]
\end{gathered}
$$

Figure A1. Availability Loss: Cumulative Distribution of Function (CDP)

Which implies that
$\frac{1+c(\pi+\rho-\pi \rho)}{1+\pi+\rho-\pi \rho}<m<c+(1-c)(1+\pi+\rho-\pi \rho)$

This takes into account both the software homogeneity scenarios (i.e., all nodes have software configuration 1 or all nodes have software configuration 2). ρ, as before, is the failure correlation for software (configuration) 1 and software (configuration) 2. The aforementioned condition states that when the two software (configurations) have comparable attack rates, software diversity second order stochastically dominates software homogeneity. QED.

Proof of Proposition 2

We can get the results by differentiating the lower bound and upper bound of Proposition 1 to c, π, and ρ.

Derivation of $E[Y]$ and $E\left[Y^{2}\right]$

$E[Y]=E_{\text {attack }} E[Y /$ attack $]$
An attack can be one of three types:

1. Specific to vulnerability in software 1 .
2. Specific to vulnerability in software 2.
3. Exploiting a vulnerability common to both software 1 and 2 .

Therefore, the expected number of failures under diverse deployment is given by

$$
\mathrm{E}[\mathrm{Y}]=\operatorname{Prob}(\operatorname{attack}=1) * \mathrm{E}[\mathrm{Y} / \text { attack }=1]+\operatorname{Prob}(\text { attack }=2) * \mathrm{E}[\mathrm{Y} / \text { attack }=2]+\operatorname{Prob}(\text { attack }=\text { common }) * \mathrm{E}[\mathrm{Y} / \text { attack }=\text { common }]
$$

Now, a is the rate of attacks on software 1 , and $m \cdot$ a is the rate of attacks on software 2 , where m is related to relative market shares. $c \cdot a$ is the rate of attacks which are common to both software configurations. Then,

$$
\begin{aligned}
& \operatorname{Prob}(\text { attack }=1 \text { only }) \\
& \text { Prob(attack }=2 \text { only }) \\
& =\frac{1-c}{1+m-c} \\
& 1+m-c
\end{aligned}
$$

$$
\text { Prob }(\text { attack }=\text { common })=\frac{c}{1+m-c}
$$

Therefore,

$$
\begin{aligned}
E[Y] & =\frac{1-c}{1+m-c} * E\left[Y_{1}\right]+\frac{m-c}{1-m-c} * E\left[Y_{2}\right]+\frac{c}{1+m-c} * E[Y] \\
& =\frac{1-c}{1+m-c} * N x_{1} \pi+\frac{m-c}{1+m-c} * N\left(1-x_{1}\right) \pi+\frac{c}{1+m-c} * N \pi
\end{aligned}
$$

We know that $E\left[Y^{2}\right]=V[Y]+E[Y]^{2}$, and $V[Y]=E_{\text {attack }}[V[Y /$ attack $]]+V_{\text {atack }}[E[Y /$ attack $]]$, using the two we get $E\left[Y^{2}\right]=E_{\text {attack }}[V[Y /$ attack $k]$ $+V_{\text {attack }}[E[Y /$ attack $]]+E[Y]^{2}$. Where variance $V[Y]$ for a beta-binomial distribution is given by $V[Y]=N \pi(1-\pi) \rho(1 / \rho-1+N)$. Therefore, $\mathrm{E}\left[\mathrm{Y}^{2}\right]$ can be expanded as

$$
\begin{aligned}
E\left[Y^{2}\right] & =\frac{(1-c) N x \pi(1-\pi) \rho\left(\rho^{-1}-1+N x\right)}{m-c} \\
& +\frac{(m-c) N(1-x) \pi(1-\pi) \rho\left(\rho^{-1}-1+N(1-x)\right)}{1+m-c} \\
& +\frac{c N \pi(1-\pi) \rho\left(\rho^{-1}-1+N\right)}{1+m-c} \\
& +(1-c)\left(N x \pi-\frac{(1-c) N x \pi}{1+m-c}-\frac{(m-c) N(1-x) \pi}{1+m-c}-\frac{c N \pi}{1+m-c}\right)^{2}(1+m-c)^{-1} \\
& +(m-c)\left(N(1-x) \pi-\frac{(1-c) N x \pi}{1+m-c}-\frac{(m-c) N(1-x) \pi}{1+m-c}-\frac{c N \pi}{1+m-c}\right)^{2}(1+m-c)^{-1} \\
& +c\left(N \pi-\frac{(1-c) N x \pi}{1+m-c}-\frac{(m-c) N(1-x) \pi}{1+m-c}-\frac{c N \pi}{1+m-c}\right)^{2}(1+m-c)^{-1} \\
& +\left(\frac{(1-c) N x \pi}{1+m-c}+\frac{(m-c) N(1-x) \pi}{1+m-c}+\frac{c N \pi}{1+m-c}\right)^{2}
\end{aligned}
$$

