
RESEARCH ARTICLE

RECOMMENDATION NETWORKS AND THE LONG TAIL OF
ELECTRONIC COMMERCE

Gal Oestreicher-Singer
Recanati Graduate School of Business, Tel Aviv University, Tel Aviv 69978 ISRAEL {galos@post.tau.ac.il}

Arun Sundararajan
Stern School of Business, New York University, 44 West 4th Street,

New York, NY 10012 U.S.A. {asundara@stern.nyu.edu}

Appendix A

Algorithm for Data Collection

We use two computer programs for data collection. The first collects graph information and the second collects SalesRank information. Both
use Amazon.com’s XML data service. This service is part of the Amazon Web Services, which provide developers with direct access to
Amazon’s platform and databases.

Graph Collection

The program (crawler) which collects the graph starts at a popular book. It then traverses the co-purchase network using a depth-first search.
Intuitively, in a depth-first search, one starts at the root (in our case, the one popular book chosen) and traverses the graph as far as possible
along each branch before backtracking. At each page, the crawler gathers and records information for the book whose webpage it is on, as well
as the co-purchase links on that page. The ASINs of the co-purchase links are entered into a LIFO (Last-In-First-Out) stack. If the algorithm
finds it is on the page of a product that it has visited already, it backtracks and returns to the most recent product it has not yet finished
exploring. The program terminates when the entire connected component of the graph is collected.

For example, in the graph in Figure A1, the nodes are numbered in the order in which the crawler will traverse the graph. In this case, the
collection starts at node 1. Its co-purchase links are nodes 2, 6, and 7. Therefore, those numbers are added to a LIFO stack. The script will
then proceed to node 2, whose co-purchases are nodes 3, 4, 5, and thus, those numbers will be added to the LIFO stack, which will now include:
3, 4, 5, 6, and 7. The script will continue to node 3. Since there are no co-purchase links to that node, it will move on to node 4. In the same
way, the script will collect data about node 5, node 6, and node 7.

Since node 7 has co-purchase links—nodes 8 and 9—they will be added to the stack. After visiting nodes 8, 9, and 10, the data collection will
terminate. As can be seen, the script only stops once it has collected information about the entire connected component. The collection of the
entire connected component on Amazon.com takes between four and five hours. The script is run each day at midnight.

MIS Quarterly Vol. 36 No.1–Appendices/March 2012 A1

Oestreicher-Singer and Sundararajan/Recommendation Networks & the Long Tail of E-Commerce

61

7

8

9

4

3

2

5

10

61

7

8

9

4

3

2

5

10

Figure A1. Depth-First Search Used for Graph Traversal

SalesRank Collection

A second computer program collects the demand information for all books on the graph every 3 hours for the 24-hour period following the
collection of the graph. This script collects the SalesRank of each book that has ever appeared on the graph. Therefore, it follows the sales
of some books that are no longer on the graph.

Appendix B

Converting SalesRank to Demand

 SalesRank is a number associated with each product on Amazon.com that measures the product’s demand relative to that of the other products
sold on Amazon.com. The lower the number is, the higher the sales of that particular product. The SalesRank of a book is updated each hour
to reflect recent and historical sales of every item sold on Amazon.com.

 A formula to convert SalesRank information into demand information was first introduced by Goolsbee and Chevalier (2003). Their goal was
to estimate demand elasticity. Their approach was based on making an assumption about the probability distribution of book sales, and then
fitting some demand data to this distribution. They chose the standard distributional assumption for this type of rank data, which is the Pareto
distribution (i.e., a power law). In the Pareto distribution, the probability that an observation’s value exceeds some level S is an exponential
function

(22)Pr()s S
k

s
> =

θ

where k and θ are the parameters of the distribution. The more important parameter is θ, the shape parameter that indicates the relative
frequency of large observations. If θ is 2, for example, the probability of an observation decreases in the square of the size of the observation.
With a value of 1, it decreases linearly.

For a given book, the number of books that have sales greater than those of that book is just one less than the book’s rank. Therefore, the
fraction of all books that have sales greater than those of a particular book is just [SalesRank – 1]/TotalNumberOfBooks. If there is a sufficient
number of books to eliminate the approximation introduced by discreteness, then one can replace the equation above with:

A2 MIS Quarterly Vol. 36 No. 1–Appendices/March 2012

Oestreicher-Singer and Sundararajan/Recommendation Networks & the Long Tail of E-Commerce

(23)
[]

()

SalesRank

TotalNumberOfBooks

k

Demand j

−
=

1
θ

Taking logs on both sides, and substituting θ with –1/b, this translates ranks into sales as follows:

Log[Demand(j)]= α + bLog[SalesRank(j)] (24)

The parameters a and b were estimated by Goolsbee and Chevalier using several parallel methods: by using data from the Wall Street Journal
book sales index, which gives the actual quantity sold; by using sales information given by a publisher who sells on Amazon.com; and by
conducting an experiment, buying copies of books with a steady SalesRank.

In a later study, Brynjolfsson et al. (2003), used data provided by a publisher selling on Amazon.com to conduct a more robust estimation of
the parameters of the formula. They estimate the parameters as: a = 10.526, b = -0.871.

Appendix C

A More Detailed Description of PageRank

Let u be a web page. Let F(u) be the set of pages u points to, and let B(u) be the set of pages that point to u. Let N(u)=|F(u)| be the number
of links from u, and let c be a factor used for normalization (so that the sum of rank across all web pages is constant). A simple ranking, R(u),
is defined as

(25)R u c
R v

N vv B u

()
()

()()

=
∈

This is a simplified version of PageRank. The rank of a page is divided among its forward links evenly to contribute to the ranks of the pages
to which they point. Note that c < 1 because there are a number of pages with no forward links, and their weight is lost from the system. The
equation is recursive, but it may be computed by starting with any set of ranks (commonly, equal rank for all pages) and iterating until
convergence.

Stated another way, let A be a square matrix with the rows and columns corresponding to numbered web pages. Let if there isA u v n u(,) ()= 1

an edge from u to v, and A(u, v) = 0 otherwise. If we treat the rankings as a vector R over the linked pages, we have

R = cAR (26)

So R is an eigenvector of A with eigenvalue c. In fact, the interesting one is the dominant eigenvector of A. It may be computed by repeatedly
applying A to any non-degenerate start vector.

There is a small problem with this simplified ranking function. Consider two webpages that point to each other but not to any other page.
Suppose there is some webpage that points to one of them. Then, during iteration, this loop will accumulate rank but never distribute any rank
(since there are no outgoing edges). The loop forms a sort of trap which is called a rank sink. To overcome this problem of rank sinks, the
damping factor (1 – α) is introduced. The normalization factor c is then set to α. Thus, the full ranking formula is

(27)′ =
′

+ −
∈
R u

R v

N vv B u

()
()

()
()

()

α α1

For further details and extensions, see Langville and Meyer (2005).

MIS Quarterly Vol. 36 No.1–Appendices/March 2012 A3

Oestreicher-Singer and Sundararajan/Recommendation Networks & the Long Tail of E-Commerce

Appendix D

Correlation Matrix

The correlation matrix for our variables is presented in Table D1.

Table D1. Covariance Matrix
R

ev
en

ue
G

in
i

A
vg

P
ag

R
an

k

P
ag

eR
an

kV
ar

P
ag

re
R

an
kK

ur
to

is

A
vg

D
em

an
d

S
iz

e

Li
st

P
ri

ce

S
al

eP
ri

ce

M
ix

in
g

C
lu

st
er

in
g

RevenueGini 1.00

AvgPageRank 0.10 1.00

PageRankVar0.17 0.17 0.58 1.00

PageRankKurtosis 0.09 -0.56 -0.25 1.00

AvgDemand 0.55 0.05 0.06 0.10 1.00

Size 0.19 0.19 0.15 0.18 0.03 1.00

ListPrice -0.13 0.22 0.16 -0.30 -0.12 -0.06 1.00

SalePrice -0.14 0.20 0.17 -0.28 -0.12 -0.06 0.94 1.00

Mixing -0.10 0.13 -0.09 0.10 -0.05 0.36 0.00 -0.02 1.00

Clustering -0.10 0.08 -0.23 0.17 0.14 -0.05 -0.41 -0.43 0.23 1.00

References

Brynjolfsson, E., Hu, Y. J., and Smith, M. D. 2003. “Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product
Variety at Online Booksellers,” Management Science (49:11), pp. 1580-1596.

Goolsbee, A., and Chevalier, J. A. 2003. “Measuring Prices and Price Competition Online: Amazon and Barnes and Noble,” Quantitative
Marketing and Economics (1), pp. 203-22.

Langville, A., and Meyer, C. 2005. “Deeper Inside PageRank,” Internet Mathematics (1:3), pp. 335-380.

A4 MIS Quarterly Vol. 36 No. 1–Appendices/March 2012

