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Appendix A

A Hierarchical Coevolution Genetic Algorithm for 
Adaptive M&A Decision Support

Figure A1 depicts an overview of the coevolution process controlled by the proposed HCGA algorithm.  The Level II (high-level) population
consists of individuals representing the feasible values of the application parameters.  The Level I (low-level) populations represent two sets
of system parameters (i.e., two species).  One of the low-level populations represents the system parameters that drive the sentiment analysis
process, whereas the second low-level population represents the system parameters that control the business relation mining process.  The
HCGA algorithm controls the evolutionary processes among all of the populations.  At the end of the coevolution process, a set of near-optimal
application parameter values and low-level NLP features (e.g., the use of specific sentiment lexicons) with respect to a particular M&A situation
are obtained to refine the M&A target scoring function (i.e., the decision support mechanism).

The fitness of an individual from each population is assessed in terms of a high-level measure, that is, the system’s performance on M&A target
recommendations.  In particular, the precision regarding making top 10 recommendations (i.e., P@10) is assessed to determine an individual’s
fitness.  The rationale for using P@10 (Ounis et al. 2008) as the fitness function instead of other quantitative measures such as ROI is that it
may take years for an M&A deal to generate the anticipated ROI, and thus this kind of information may not be available to assess the system’s
performance.  The P@10 score is computed with respect to a set of training M&A cases retrieved from the real-world or recommended by M&A
experts.  The fitness of an individual (chromosome) c is defined by the following:
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where TruePositivetop-10 and FalsePositivetop-10 represent the true positive and false positive recommendations at the top 10 positions,
respectively.  In other words, the system’s M&A scoring module (i.e., the decision support model) is invoked to generate the top 10
recommendations whenever the fitness of a chromosome needs to be evaluated.
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Figure A1.  Overview of the Hierarchical Coevolutionary Process

When an HCGA-coordinated evolutionary process takes place, it always begins with the high-level population.  To assess the fitness of each
individual in the Level II population, the fittest individual from each Level I population is passed to the Level II population.  In other words,
the sets of system parameters and the set of application parameters are combined to drive the eventual M&A target scoring process.  The P@10
score of the resulting M&A recommendations is used to assess the fitness of each individual.  Similarly, the fittest individual of the Level II
population is passed to a Level I population when the fitness of an individual in a Level I population is assessed.  In addition, the fittest
individual is exchanged between the two Level I populations.  These interactions among the species (populations) drive the coevolution process. 
The advantage of the coevolutionary approach is that a large solution space can be divided into subspaces for a parallel and diversified search,
which improves both the efficiency and the effectiveness of the heuristic search process (Delgado et al. 2004; Olsson 2001).

Figure A2.  Gene Encoding of the HCGA Algorithm
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Figure A3.  The HCGA Algorithm

Figure A2 shows the gene encoding of individuals in both Level I and Level II populations.  Basically, a Level II chromosome carries the genes
representing various application parameters, such as the scoring formula for each due diligence dimension, the time window of due diligence,
the weights of various financial metrics, the weights of various sociocultural factors, the weights of various factors related to business fitness,
and the weights of various factors related to competitive advantage of an M&A target.  All together, there are 36 evolvable genes of each Level
II chromosome.  A Level I chromosome carries the genes related to various system parameters and low-level NLP features (e.g., a specific
generic sentiment lexicon to be used) controlling the sentiment analysis process or the business relation mining process.  There are 9 evolvable
genes of the Level I chromosome representing the system parameters controlling sentiment analysis, and 12 that are encoding the parameters
for business relation mining.  Decimal gene encoding is used for both Level I and Level II chromosomes in our system (Goldberg 1989; Lau
et al. 2006).

Figure A3 shows the computational details of the HCGA algorithm.  At the beginning of a coevolutionary process (i.e., the first generation),
the chromosomes at each level are initialized by randomly assigning feasible values to each evolvable gene.  Then, the fitness of each individual
(chromosome) in a population is evaluated starting from level II.  During fitness evaluation, the fittest individuals among the populations are
exchanged according to the interaction pattern depicted in Figure A1.  For the first generation, a randomly chosen individual from each Level
I population is passed to the Level II population for fitness computation because the fitness of each individual of a Level I population has not
yet been determined.  For the subsequent generations, only the fittest individuals are exchanged among the populations.  For each population,
standard genetic operators such as selection, crossover, and mutation are applied to reproduce individuals of the next generation (Goldberg
1989; Huang et al. 2009; Lau et al. 2006).  Moreover, the elitism rate we (i.e., the elitism factor) is applied to directly transfer a certain
percentage of the fittest chromosomes from the current generation to the next generation Pi+1 in order to retain the fittest chromosomes that
represent good solutions for a problem domain (Goldberg 1989; Lau et al. 2006).
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Roulette wheel selection (Goldberg 1989; Huang et al. 2009; Maiti and Maiti 2008) is applied to choose relatively fitter chromosomes from
the current generation to produce individuals of the next generation.  This type of selection is analogous to a roulette wheel, where each
individual occupies an area on the wheel.  The larger area the individual occupies, the more likely the ball will land there (i.e., the individual
will be chosen).  To tie the fitness of a chromosome to its probability of being chosen for reproduction of the next generation, a probabilistic
selection function is defined according to the following:
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where c is a chromosome under consideration and  is the fitness function defined earlier.  Psize is the predefined size of a population P.  To
implement roulette wheel selection, a random number r in the unit interval is generated for each chromosome under consideration.  If the
selection probability Pr(c) of a chromosome c is greater than the random number  (i.e., Pr(c) > r), the corresponding chromosome is selected
for reproduction.  In other words, a fitter chromosome has a better chance to be selected for reproduction.  However, chromosomes with low
fitness values may also have a chance to be selected to maintain a good balance between exploitation- and exploration-oriented search.

After two chromosomes are selected for re-production, the genetic operation of two-point crossover (Goldberg 1989; Lau et al. 2006; Ruiz-
Torrubiano 2010) is applied according to a predefined crossover probability pc.  Specifically, a random number r in the unit interval is generated
for the pair of chromosomes under consideration.  If r < pc  is true, a two-point crossover is applied to the selected pair of chromosomes. 
Basically, two points along the evolvable genes of the pair are randomly selected.  Then, the genes within the two-point boundary are exchanged
between the two parent chromosomes to produce two child chromosomes.  If r < pc is not established, the crossover operation will not be applied
to the pair.

Each chromosome of the selected pair is then considered for the mutation operation after the crossover operation.  First, a random number r
in the unit interval is generated for each evolvable gene of each chromosome of the selected pair.  If r < pm is true, where pm is a predefined
mutation rate, a mutation operation will be applied to the particular gene.  With decimal gene encoding, the current value of the selected gene
is replaced by another feasible gene value randomly.  The evolutionary process (i.e., selection, crossover, and mutation) is repeated until the
number of individuals of the next generation reaches the predefined number Psize.  The aforementioned evolutionary process is applied to each
population from high-level to low-level.  If the average fitness of each population reaches a predefined threshold AVGfit, or the number of
generations reproduced exceeds the maximum number of generations MAXgen, the HCGA algorithm will be terminated.  At this stage, the fittest
chromosome from each population is chosen to drive the operation of the M&A target scoring module of the ABIMA system.  Table A1 lists
the genetic parameters of the HCGA algorithm; these parameters were applied to the experiments reported in this paper.

Table A1.  Parameter Settings of the HCGA Algorithm

HCGA Parameters

Level II Population
(Application
Parameter)

Level I Population
(Sentiment Analysis

Parameter)

Level I Population
(Relationship Mining

Parameter) 

Size of population Psize[1] = 90   Psize[2] = 40 Psize[3] = 40 

Gene encoding decimal decimal decimal 

Elitism rate we[1] = 10% we[2] = 10% we[3] = 10%
Crossover probability Pc[1] = 0.83 Pc[2] = 0.83 Pc[3] = 0.83
Mutation probability Pm[1] = 0.05 Pm[2] = 0.05 Pm[3] = 0.05
Type of crossover two-point two-point two-point

Type of mutation uniform uniform uniform

Max number of generations Maxgen = 500  

Max average fitness Avgfit = 0.95
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Appendix B

Affect Analysis for Sociocultural Fitness Assessment of M&A Targets

Affect analysis is very useful for modeling financial phenomena from both theoretical and pragmatic perspectives (Bollen et al. 2011; Deresky
2011).  Recently, affect analysis has been successfully applied to predict the movement of the Dow Jones Industrial Average (Bollen et al.
2011).  The main function of our affect analysis module is to estimate the sociocultural fitness of the targeted M&A companies, the targeted
industrial sectors, or the entire targeted nation.  For instance, affect analysis can be applied to assess the public’s feelings (e.g., happiness or
fear) about a potential M&A deal after it is announced.  Specifically, the WordNet-affect lexicon (Valitutti et al. 2004) is applied to build our
affect analysis module.  From among the big six classes of affect (i.e., anger, fear, happiness, sadness, surprise, and neutral) that are often
applied to affect analysis (Calix et al. 2010), four of them—anger, fear, happiness, and sadness—are used to estimate the emotion score of a
potential M&A deal.  The affect classes of surprise and neutral are not used by our affect analysis module because our preliminary experiments
show that these classes cannot improve the performance of M&A affect analysis. 

Each token of a financial document (e.g., a financial news article or an investor comment about a potential M&A deal) is matched against the
WordNet-affect lexicon to identify its emotion class.  Then, the emotion score of the document is computed according to the following:

emotion d
happy anger fear sad

happy anger fear sad
( )

| | (| | | | | |)

| | | | | | | |
=

− + +
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where happy, anger, fear, and sad represent the sets of emotional indicators extracted from a financial document d, which covers the potential
M&A deal.  With respect to the predefined time window of due diligence (i.e., an input parameter of an M&A query), each emotion score is
then weighted using an exponential decay function (Barari and Mitra 2008; Jo et al. 1997).  In particular, we apply the following exponential
decay function to weight the affect scores:

emotion d t emotion d e
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where emotion(d) the term  is the original affect score of a document d (i.e., without weighting), and emotion(d, t) is the weighted emotion score
at time point t.  The term τ is the due diligence time window specified in months, and the term  (tcurrent – t) is the elapsed time (in months)
between the time t when a financial document containing affects is posted and the time  tcurrent when M&A target scoring is conducted.  For an
emotion score derived from a document posted in the same month when M&A target scoring is conducted, the elapsed time (tcurrent – t) is zero.
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The weighted emotion score of a potential M&A deal emotin(deal) is the mean of the weighted emotion scores of the set of relevant financial
documents D containing affects about a deal over each time point of the due diligence window, and it is defined by

emotion deal
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where emotion(dj, ti)  represents the emotion score of a document dj at time point ti.  The term Di refers to the set of relevant documents at each
time point ti.  Finally, the sociocultural fitness of an M&A target is estimated by taking into account the weighted emotion score of the potential
M&A deal and other sociocultural factors.
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