An Analysis of Pricing Models in the Electronic Book Market

Lin Hao
Mendoza College of Business, University of Notre Dame, Notre Dame, IN 46556 U.S.A. \{lhao@nd.edu\}
Ming Fan
Foster School of Business, University of Washington, Seattle WA 98195 U.S.A. \{mfan@uw.edu\}

Appendix

Proof of Proposition 1

We solve p_{D}^{*} from $\frac{\partial \tau_{R}}{\partial p_{D}}=0$. Then we substitute it into $\frac{\partial \tau_{R}}{\partial p_{E}}=0$ and solve for p_{E}^{*}. We obtain $p_{E}^{*}=w_{E}$ or $p_{E}^{*}=w_{E} \pm \sqrt{A_{1}}$ where A_{1} is a function of the parameters. We find $\left.\pi_{R}\right|_{p_{E}=w_{E}}-\left.\pi_{R}\right|_{p_{E}=w_{E} \pm \sqrt{A_{1}}}=\frac{A_{1}^{2}}{32 m^{2} t}>0$. Therefore, we have $\left.\pi_{R}\right|_{p_{E}=w_{R}}>\left.\pi_{R}\right|_{p_{E}=w_{E} \pm \sqrt{A_{1}}}$. Next, we find $\left.\pi_{P}\right|_{p_{E}=w_{E}}-\pi_{P_{p_{E}}=0} \left\lvert\,=\frac{w_{E}^{2} B_{1}}{32 m^{2} t}\right.$ where B_{1} is a function of the parameters. Remember that the e-book market size s_{E} must be greater than zero at $p_{E}^{*}=0$ in order to make $p_{E}^{*}=0$ economically sensible. Therefore, we have $\left.s_{E}\right|_{p_{E}=0}=\frac{C_{1}}{16 m t}>0$. We find $B_{1}-C_{1}=w_{E}^{2}>0$. As $C_{1}>0$, we find $B_{1}>0$. Since $B_{1}>0$, we have $\left.\pi_{P}\right|_{p_{\varepsilon}^{*}=w_{E}}>\left.\pi_{P}\right|_{p_{\dot{E}}=0}$. To verify the second order conditions, we derive the $2 \times$ 2 Hessian matrix. We evaluate matrix H at optimal point $\left(p_{E}^{*}, p_{D}^{*}\right)$. We find $H_{11}=\frac{\partial^{2} \pi_{R}}{\partial p_{E}^{2}}=\frac{-1}{8} \frac{D_{1}}{m^{2} t}$ and $|H|=\frac{E_{1}}{8 t^{2} m^{2}}$ where D_{1} and E_{1} $=D_{1}-8\left(b-w_{E}\right)^{2}$. Therefore, we find $D_{1}>E_{1}$. So in order to show $H_{11}<0$ and $|H|>0$, we only need to show $E_{1}>0$. We find $\left.s_{E}\right|_{p_{\varepsilon}^{\prime}=w_{E}}=\frac{E_{1}}{8 m t}$. We know $\left.s_{E}\right|_{p_{t}=w_{E}}$ must be greater than zero. Hence we have $E_{1}>0$. So we verify that the optimal choice of ebook retail price p_{E}^{*} and e-reader price p_{D}^{*} in Proposition 1.

Proof of Proposition 2

We let $\hat{\pi}_{P}$ denote the publisher's total profit at the retailer's optimal choice of prices (p_{E}^{*}, p_{D}^{*}). First we wil prove that $0<w_{E}^{*}<\frac{b+c_{A}}{2}$. We define $f_{2}\left(w_{E}\right)=\frac{\partial \hat{\tau}_{P}}{\partial w_{E}}$. Notice that f_{2} is a cubic function of w_{E} and we find that $\frac{\partial f_{2}}{\partial w_{E}^{3}}=-\frac{3}{t m^{2}}<0$. The potential optimal points are $f_{2}\left(w_{E}^{*}\right)=0, w_{E}^{*}=0$, or $w_{E}^{*}=b$. We find that $w_{E}^{*}=0$ can be removed from the candidate set as it is not difficult to show $\left.\hat{\pi}_{P}\right|_{w_{E}^{*}=0}$ is less than the profit of not selling any e-book. Second, $w_{E}^{*}=b$ can also be removed as it violates consumer's IR constraint. Therefore, we focus on $f_{2}\left(w_{E}^{*}\right)=0$. Next, we show $\left.f_{2}\right|_{w_{E}=0}>0$. We derive $\left.f_{2}\right|_{w_{E}=0}=\frac{A_{2}}{8 t m^{2}}$. It is not difficult to show
$\min A_{2}=2\left(\left(w_{F}-c_{A}-c_{P}\right)\left(b-p_{F}\right)+c_{A} b\right) b>0$. Therefore, we have $\left.f_{2}\right|_{w_{E}=0}>0$. Next we find $\left.f_{2}\right|_{w_{E}=\left(b+c_{A}\right) 2}=-\frac{\left(b-c_{A}\right) B_{2}}{32 t^{2}}$ and $\min _{c_{A}} B_{2}=4\left(p_{F}-w_{F}+c_{P}\right)\left(b-p_{F}\right)>0$. Therefore, we have $\left.f_{2}\right|_{w_{E}=\left(b c_{A}\right) / 2}<0$. Meanwhile, we find that $\left.\frac{\partial^{2} f_{2}}{\partial v_{E}^{2}}\right|_{w_{E}=\left(b+c_{1}\right) / 2}=\frac{3}{4} \frac{b-c_{A}}{\mathrm{tm}^{2}}>0$. Combining $\left.f_{2}\right|_{w_{E}=0}>0,\left.f_{2}\right|_{w_{E}=\left(b+c_{A}\right) / 2}<0,\left.\frac{\partial^{2} f_{2}}{\partial w_{E}^{2}}\right|_{w_{E}\left(b+c_{A}\right) / 2}=\frac{3}{4} \frac{b-c_{A}}{t m^{2}}>0$, and $\frac{\partial^{3} f_{2}}{\partial w_{E}^{3}}<0$, we conclude that there is only one w_{E}^{*} in $\left(0, \frac{b+c_{A}}{2}\right)$, satisfying $f_{2}\left(w_{E}^{*}\right)=0$. Because $\left.\frac{\partial^{2} \hat{\pi}_{P}}{\partial v_{E}^{2}}\right|_{w_{E}=w_{E}}<0, \frac{\partial v_{E}^{*}}{\partial c_{P}}$ has the same sign as $\left.\frac{\partial^{2} \hat{\pi}_{P}}{\partial v_{E} \partial d_{P}}\right|_{v_{E}=w_{E}{ }^{*}}$. We derive $\left.\frac{\partial^{2} \hat{\pi}_{P}}{\partial v_{E} \partial_{P}}\right|_{w_{E}=w_{E} v_{E}}=-\frac{\left(b-p_{F}\right)\left(b-w_{E}^{*}\right)}{4 m^{2} t}<0$. Therefore, we find $\frac{\partial w_{E}^{*}}{\partial d_{P}}<0$. Similarly, $\frac{\partial v_{E}^{*}}{\partial x_{F}}$ has the same sign as $\left.\frac{\partial^{2} \hat{\pi}_{P}}{\partial v_{E} \partial_{F}}\right|_{w_{E}=w_{E}}$. We then derive

Proof of Proposition 3

Note that π_{R} is a quadratic function for p_{D} and $\partial^{2} \pi_{R} / \partial p_{D}^{2}<0$. Therefore, we solve $\partial \pi_{R} / \partial p_{D}=0$ and then we find p_{D}^{*} in Proposition 3.

Proof of Proposition 4

Proof of this proposition follows the procedure similar to Proposition 2. We let $\hat{\pi}_{P}$ denote the publisher's total profit at the retailer's optimal choice of e-reader price p_{D}^{*}. We define $f_{4}\left(p_{E}\right)=\frac{\partial \hat{\tau}_{P}}{\partial p_{E}}$. Notice that f_{4} is a cubic function of p_{E} when $r \neq \frac{1}{2}$ (in the case of $r \neq \frac{1}{2}$, the proof will be straightforward). Next, we show $\left.f_{4}\right|_{p_{E}=0}>0$. We derive $\left.f_{4}\right|_{p_{E}=0}$ and follow the similar steps as the proof of Proposition 2. We find that $\left.\min f_{4}\right|_{p_{E}=0}=\frac{2 b(1-r) \cdot\left(\left(w_{F}-c_{P}-c_{A}\right)\left(b-p_{F}\right)+b c_{A}\right)}{8 t m^{2}}>0$. So we have $\left.f_{4}\right|_{p_{E}=0}>0$. Next we find $\left.f_{4}\right|_{p_{E}=\bar{p}_{E}}=\frac{\left(c_{A}-2 c_{A} r-b+r b\right) A_{2}}{32 m^{2}(1-r)^{2} t}$ and $\min _{c_{A}} A_{4}=4(1-r)\left(p_{F}-p_{F} r+c_{P}-w_{F}\right)\left(b-p_{F}\right)$. It is not difficult to show $c_{A}-2 c_{A} r-b+r b<0$. Therefore, $\left.f_{4}\right|_{p_{E}=\bar{p}_{E}}<0$ when $r<\frac{p_{F}-w_{F}+c_{P}}{p_{F}}$. Meanwhile, we find that $\left.\frac{\partial^{2} f_{4}}{\partial p_{E}^{2}}\right|_{p_{E}=\bar{P}_{E}}=-\frac{3}{4} \frac{c_{A}-2 r c_{A}-b+r b}{m^{2} t}>0$. Combining $\left.f_{4}\right|_{p_{E}=0}>0,\left.f_{4}\right|_{p_{E}=\bar{P}_{E}}<0$, and $\left.\frac{\partial^{2} f_{4}}{\partial p_{E}^{2}}\right|_{p_{E}=\bar{P}_{E}}>0$ and the fact that f_{4} is a cubic function, we conclude that there exists only one p_{E}^{*} in $\left(0, \bar{p}_{E}\right)$ satisfying $f_{4}\left(p_{E}^{*}\right)=0$. Therefore, we have $p_{E}^{*}<\bar{p}_{E}$ when $r<\frac{p_{F}-w_{F}+c_{P}}{p_{F}}$.

Proof of Proposition 5

Having shown the result $0<p_{E}^{*}<\bar{p}_{E}$ in Proposition 4, we will next prove that $\frac{\partial p_{E}^{*}}{\partial c_{P}}<0$ and $\frac{\partial p_{E}^{*}}{\partial c_{F}}>0 . \frac{\partial p_{E}^{*}}{\partial c_{P}}<0$ Has the same sign as $\left.\frac{\partial^{2} \hat{\pi}_{P}}{\partial p_{E} \partial c_{P}}\right|_{p_{E}=p_{E}^{*}}$. We derive $\left.\frac{\partial^{2} \hat{\pi}_{P}}{\partial p_{E} \partial c_{P}}\right|_{p_{E}=p_{E}^{*}}=\frac{\left(b-p_{F}\right)\left(p_{E}-2 p_{E} r-b+r b\right)}{4 m^{2} t}$. It is not difficult to show $p_{E}-2 p_{E} r-b+r b<$
0. Hence, we find $\frac{\partial p_{E}^{*}}{\partial c_{P}}<0$. Similarly, $\frac{\partial p_{E}^{*}}{\partial c_{F}}$ has the same sign as $\left.\frac{\partial^{2} \hat{\pi}_{P}}{\partial p_{E} \partial c_{P}}\right|_{p_{\varepsilon}=p_{E} \dot{E}}$. We then derive

$$
\left.\frac{\partial^{2} \hat{\pi}_{P}}{\partial p_{E} \partial c_{F}}\right|_{p_{E}=p_{E}^{*}}=\frac{(1-r)\left(b-p_{F}\right)\left(\bar{p}_{E}-p_{E}\right)}{2 m^{2} t} . \text { Given } 0<p_{E}^{*}<\bar{p}_{E}, \text { we have }\left.\frac{\partial^{2} \hat{\pi}_{p}}{\partial p_{E} \partial c_{F}}\right|_{p_{E}=p_{E}^{*}}>0 . \text { Therefore, we proved } \frac{\partial p_{E}^{*}}{\partial c_{F}}>0 .
$$

Proof of Proposition 6

In this subsection of proof, we denote the publisher's profit in the agency model's SPNE by $\hat{\pi}_{P}^{A}$. We denote the publisher's profit in the wholesale model's SPNE by $\hat{\pi}_{P}^{W}$. We align the two first order conditions $\partial \hat{\pi}_{P}^{4} / \partial p_{E}=0$ and $\partial \hat{\pi}_{P}^{W} / \partial w_{E}=0$. We eliminate a common term $m\left(t-c_{D}\right)-w_{F} p_{F}+c_{F} b+p_{F}^{2} / 2-c_{F} p_{F}+w_{F} b$ and then obtain a new equation $f_{8}\left(p_{E}^{A^{*}}, w_{E}^{W^{*}}\right)=0$. Since $w_{E}^{W^{*}}=p_{E}^{W^{*}}$ in the wholesale model's SPNE, in order to prove $p_{E}^{A^{*}}>p_{E}^{W^{*}}$, we just need to prove $p_{E}^{A^{*}}>w_{E}^{W^{*}}$. We define $w_{E}^{W^{*}}=k p_{E}^{A^{*}}$ and substitute it into $f_{8}\left(p_{E}^{4^{*}}, w_{E}^{W^{*}}\right)=0$. This transforms $f_{8}\left(p_{E}^{4^{*}}, w_{E}^{W^{* *}}\right)=0$ into $f_{8}(k)=0$. We define $f_{9}(k)=m^{2} t \cdot f_{8}(k)$. Then we just need to prove that there exists one and only one root of $f_{9}(k)$ in [0,1]. We will prove it by proving $\left.f_{9}\right|_{k=0}<0,\left.\quad f_{9}\right|_{k=1}>0$, and $\partial f_{9} / \partial k>0$ in $0<k \leq 1$. In the following, for simplicity, we denote $p_{E}^{A^{*}}$ by p_{E} and denote $w_{E}^{W^{*}}$ by w_{E}.

First we will prove $\partial f_{9} / \partial k>0$ in $0<k \leq 1$. We derive $\frac{\partial f_{9}}{\partial k}=-\frac{1}{4} \frac{p_{E} \cdot f_{11}\left(p_{E}\right) \cdot f_{10}\left(p_{E}\right)}{\left(b-2 k p_{E}+c_{A}\right)^{2}}$ where $f_{10}\left(p_{E}\right)=r b-b-c_{A}+2 p_{E}-2 p_{E} r$ and $f_{11}\left(p_{E}\right)$ is a cubic function of p_{E} with other parameters. It is not difficult to show $f_{10}\left(p_{E}\right)<0$ when $p_{E}<\bar{p}_{E}=\left(b+c_{A} /(1-r)\right) / 2$. Next we will prove $f_{11}\left(p_{E}\right)$. In Proposition 2.3, we have proved $w_{E}<\bar{w}_{E}=\left(b+c_{A}\right) / 2$. Since we have $w_{E}=k p_{E}$, we have $p_{E}<\hat{p}_{E}=\left(b+c_{A}\right) /(2 k)$. We derive $f_{12}\left(p_{E}\right)=\frac{\partial^{2} f_{11}}{\partial p_{E}^{2}}=-48 k^{3} p_{E}+18 k^{2} c_{A}+30 k^{2} b \quad$ and $f_{13}\left(p_{E}\right)=\frac{\partial f_{11}}{\partial p_{E}}=-24 k^{3} p_{E}^{2}+2\left(9 k^{2} c_{A}+15 k^{2} b\right) p_{E}-12 k c_{A} b-9 k b^{2}-3 k c_{A}^{2}$. We first find $\left.f_{12}\right|_{p_{E}=\hat{p}_{E}}=6 k^{2}\left(b-c_{A}\right)>0$. Second, when $0<k \leq 1$, we find $\left.f_{12}\right|_{p_{E}=0}=6 k^{2}\left(5 b+3 c_{A}\right)>0$. Therefore, $f_{12}\left(p_{E}\right)>0$. Next, we find $\left.f_{13}\right|_{p_{E}=\hat{p}_{E}}=0$ and $\left.f_{13}\right|_{p_{E}=0}=-3 k\left(c_{A}+b\right)\left(3 b+c_{A}\right)$. Together with $f_{12}\left(p_{E}\right)=\partial f_{13} / \partial p_{E}>0$, we find $f_{13}\left(p_{E}\right)<0$. Therefore, in order to show $f_{11}\left(p_{E}\right)>0$, we just need to prove $\left.f_{11}\right|_{p_{E}=\hat{p}_{E}}>0$. We find $\left.f_{11}\right|_{p_{E}=\hat{p}_{E}}=\frac{1}{4}\left(b-c_{A}\right) f_{14}$ and $\min _{c_{A}} f_{14}=4\left(p_{F}-w_{F}+c_{P}\right)\left(b-p_{F}\right)>0$. Therefore, we proved $f_{11}\left(p_{E}\right)>0$. Together with $f_{10}\left(p_{E}\right)<0$, we proved $\partial f_{9} / \partial k>0$ in $0<k \leq 1$.

Next, we will prove $\left.f_{9}\right|_{k=0}<0$. We define $f_{15}\left(p_{E}\right)=\left.f_{9}\right|_{k=0}$ (i.e., we treat $\left.f_{9}\right|_{k=0}$ as a function of p_{E}). Notice that $f_{15}\left(p_{E}\right)$ is a cubic function of p_{E}. We derive $\left.f_{15}\right|_{p_{E}=0}=-\frac{1}{4} \frac{c_{A} r b\left(\left(b-p_{F}\right)\left(w_{F}-c_{P}\right)+c_{A} p_{F}\right)}{c_{A}+b}$. We find that $\left.f_{15}\right|_{p_{E}=0}<0$. Next, we find $\left.f_{15}\right|_{p_{E}=\bar{p}_{E}}=\frac{1}{32} \frac{\left(c_{A}-2 r c_{A}-b+r b\right) f_{18}}{(1-r)^{2}}$ and $\min _{c_{A}} f_{18}=-4(1-r)\left(p_{F} r-c_{P}+w_{F}-p_{F}\right)\left(b-p_{F}\right)$. It is not difficult to show when $r<\frac{p_{F}-w_{F}+c_{P}}{p_{F}}$, we have $\left.f_{15}\right|_{p_{E}=\bar{p}_{E}}<0$. We define $f_{19}\left(p_{E}\right)=\partial f_{15}^{2} / \partial p_{E}^{2}$. We find that $f_{19}\left(p_{E}\right)$ is a linear function of p_{E}. We find that $\left.f_{19}\right|_{p_{E}=0}>0$ when $r \leq \frac{3}{4}$. We also find that when $0<r<1$ we have $\left.f_{19}\right|_{p_{E}=\bar{p}_{E}}>0$. Therefore we prove $\partial f_{15}^{2} / \partial p_{E}^{2}>0$ in $p_{E} \in\left(0, \bar{p}_{E}\right)$ when $r \leq \frac{3}{4}$. Combining $\left.f_{15}\right|_{p_{E}=0}<0,\left.f_{15}\right|_{p_{E}=\bar{p}_{E}}<0$, and $\partial f_{15}^{2} / \partial p_{E}^{2}>0$, we find $\left.f_{9}\right|_{k=0}=f_{15}\left(p_{E}\right)<0$ when $r \leq \frac{3}{4}$.

Next, we will prove $\left.f_{9}\right|_{k=1}>0$. We define $f_{20}(r)=\left.f_{9}\right|_{k=1}$ as a quadratic equation of r. We derive $\left.f_{20}\right|_{r=0}=0$ and $\partial^{2} f_{15} / \partial r^{2}=-\left(b-w_{E}\right)\left(b-2 w_{E}\right) w_{E}$. In order to show $\left.f_{9}\right|_{k=1}>0$, we need $w_{E}<b / 2$ and $\left.f_{20}\right|_{r=1}>0$. We derive $\left.f_{20}\right|_{r=1}=\frac{f_{21}\left(w_{E}\right)}{4\left(b-2 w_{E}+c_{A}\right)}$
where $f_{21}\left(w_{E}\right)$ is a cubic function of w_{E}. We find that $\left.f_{21}\right|_{w_{E}=c_{A}}=2 c_{A}^{2}\left(b-c_{A}\right)^{2}>0$ and $\left.f_{21}\right|_{w_{E}=b / 2}=\frac{1}{8} b^{2} c_{A}\left(2 c_{A}+b\right)>0$. We also find that $\partial^{3} f_{21} / \partial w_{E}^{3}>0$ and $\left.\frac{\partial^{2} f_{21}}{\partial w_{E}^{2}}\right|_{w_{E}=b 2}<0$ when $p_{F}<b$. Therefore, we find $\left.f_{20}\right|_{r=1}>0$ when $c_{A}<w_{E}<b / 2$. Therefore, to make $\left.f_{9}\right|_{k=1}>0$, we only need $c_{A}<w_{E}<b / 2$. Following the same procedure of proving $0<w_{E}<\left(b+c_{A}\right) / 2$ in Proposition 2, we find that a sufficient condition for $c_{A}<w_{E}<b / 2$ is $w_{F}-c_{P}<p_{F} / 2$ and $c_{A} \leq p_{F} / 4$. Therefore, we prove $p_{E}^{A^{*}}>p_{E}^{W^{*}}$ when $r \leq \min \left\{\frac{3}{4}, \frac{p_{F}-w_{F}+c_{P}}{p_{F}}\right\}, w_{F}-c_{P}<p_{F} / 2 \quad$ and $c_{A} \leq p_{F} / 4 . \quad$ Regarding the e-reader prices, we derive $p_{D}^{A^{*}}-p_{E}^{w^{* *}}=-\frac{1}{4}\left(p_{E}^{4^{*}}-p_{E}^{w^{* *}}\right)\left(2 b-p_{D}^{4^{*}}-w_{E}^{W^{* *}}\right)-\frac{1}{2} r p_{E}^{4^{*}}\left(b-p_{E}^{A^{*}}\right)$. Since we find that when $p_{E}^{A^{*}}>p_{E}^{W^{*} *}$, we have $p_{D}^{A^{*}}<p_{D}^{W^{* *}}$.

Proof of Proposition 7 and Proposition 8

For the wholesale mode, we solve the retailer's constraint optimization problem using the Lagrange method. From the first order condition, we obtain
$p_{D 1}^{*}=\left(t+\bar{c}_{D}\right) / 2+(A \cdot \bar{\theta}) /(4 m)+\left(\theta_{H}\left(b-p_{E}\right)^{2}(1-k)(2-a)\right) /(4 m)$ and $p_{D 2}^{*}=\left(t+\bar{c}_{D}\right) / 2+(A \cdot \bar{\theta}) /(4 m)-\left(\theta_{H}\left(b-p_{E}\right)^{2}(1-k) a\right) /(4 m)$ whare $\bar{\theta}=a \theta_{H}+(1-a) \theta_{L}, \bar{c}_{D}=a c_{D 1}+(1-a) c_{D 2}$, and $A=2\left(b-p_{F}\right)\left(p_{F}-w_{F}-c_{F}\right)+k\left(b-p_{E}\right)^{2}-2\left(p_{E}-w_{E}\right)\left(b-p_{E}\right)-\left(b-p_{F}\right)^{2}$. Consider $p_{D 1}^{*}$ and $p_{D 2}^{*}$ as functions of p_{E}. We plug them back to the retailer's profit function π_{R}. We define that $g_{H}\left(p_{E}\right)=\left(\left(p_{E}-w_{E}\right) q_{E H}+\left(p_{D 1}^{*}-c_{D 1}\right)\right) s_{E H}+\left(p_{F}-w_{F}-c_{F}\right) q_{F H} s_{F H}, g_{L}\left(p_{E}\right)=\left(\left(p_{E}-w_{E}\right) q_{E L}+\left(p_{D 2}^{*}-c_{D 2}\right)\right) s_{E L}+\left(p_{F}-w_{F}-c_{F}\right) q_{F L} s_{F L}$. The π_{R} can be expressed by $\pi_{R}=a g_{H}+(1-a) g_{L}$. Following the similar steps of the proof in Proposition 2, it is not difficult to show that (i) $\partial g_{H} / \partial p_{E}=0$ can only be attained at $p_{E H}^{*}$ where $p_{E H}^{*}>w_{E}$, (ii) $\partial g_{L} / \partial p_{E}=0$ can only be attained at $p_{E L}^{*}$ where $p_{E L}^{*}>w_{E}$, (iii) $\partial^{2} g_{H} /\left.\partial p_{E}^{2}\right|_{p_{E}=p_{E H}^{*}}<0$ and $\partial^{2} g_{L} /\left.\partial p_{E}^{2}\right|_{p_{E}=p_{E L}^{*}}<0$. As π_{R} is a convex combination of g_{H} and g_{L}, we find $p_{E}^{*}>w_{E}$. For the agency model, it is straightforward to show the results presented in Proposition 8 through solving the first order conditions using the Lagrange method.

