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Appendix

Proof of Proposition 1
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Proof of Proposition 2

We let π̂P denote the publisher’s total profit at the retailer’s optimal choice of prices (p*
E, p*
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Proof of Proposition 3

Note that πR is a quadratic function for pD and M2πR/Mp2
D < 0.  Therefore, we solve MπR/MpD =0 and then we find p*

D in Proposition 3.

Proof of Proposition 4

Proof of this proposition follows the procedure similar to Proposition 2. We let  denote the publisher’s total profit at theπ P
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Proof of Proposition 5

Having shown the result 0 < p*
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Proof of Proposition 6

In this subsection of proof, we denote the publisher’s profit in the agency model’s SPNE by π̂A
P.  We denote the publisher’s profit
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Proof of Proposition 7 and Proposition 8

For the wholesale mode, we solve the retailer’s constraint optimization problem using the Lagrange method.  From the first order
condition, we obtain
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The πR can be expressed by πR = agH + (1 – a)gL.  Following the similar steps of the proof in Proposition 2, it is not difficult to
show that (i) MgH /MpE = 0 can only be attained at p*

EH where p*
EH > wE, (ii) MgL /MpE = 0 can only be attained at p*

EL where p*
EL > wE,
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model, it is straightforward to show the results presented in Proposition 8 through solving the first order conditions using the
Lagrange method.
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