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This paper resumes the discussion in information systems research on the use of partial least squares (PLS)
path modeling and shows that the inconsistency of PLS path coefficient estimates in the case of reflective
measurement can have adverse consequences for hypothesis testing.  To remedy this, the study introduces a
vital extension of PLS: consistent PLS (PLSc). PLSc provides a correction for estimates when PLS is applied
to reflective constructs: The path coefficients, inter-construct correlations, and indicator loadings become
consistent.  The outcome of a Monte Carlo simulation reveals that the bias of PLSc parameter estimates is
comparable to that of covariance-based structural equation modeling.  Moreover, the outcome shows that PLSc
has advantages when using non-normally distributed data.  We discuss the implications for IS research and
provide guidelines for choosing among structural equation modeling techniques.
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Introduction1

There has been a proliferation of structural equation modeling
(SEM) in information systems and other social science and
business disciplines (Gefen et al. 2011).  Researchers have
embraced its ability to model latent variables, correct for
measurement errors, and estimate parameters of entire theo-

ries simultaneously.  Two families of structural equation
modeling techniques prevail (Chin 1998a):  covariance-based
SEM and variance-based SEM.  Variance-based SEM in-
volves many different techniques, such as regression on sum
scores or principal components (Tenenhaus 2008), gener-
alized structured component analysis (Henseler 2012; Hwang
and Takane 2004), and partial least squares path modeling
(PLS; Wold 1982).  Among variance-based SEM techniques,
PLS has been regarded as the “most fully developed and
general system” (McDonald 1996, p. 240) and has been called
a “silver bullet” (Hair et al. 2011).  IS research has relied
heavily on PLS as a method of statistical analysis (Marcou-
lides and Saunders 2006), and MIS Quarterly, in particular,
has published a large number of PLS applications (Ringle et
al. 2012).

The use of variance-based SEM is not without disadvantages.
All variance-based structural equation modeling techniques—

1Ron Thompson was the accepting senior editor for this paper.  Christian
Ringle served as the associate editor.

The appendices for this paper are located in the “Online Supplements”
section of the MIS Quarterly’s website (http://www.misq.org).
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PLS being no exception—approximate common factors using
linear composites of observed variables.  Accordingly, the
obtained construct scores cannot be completely free from
measurement error (for an excellent explanation of why PLS
only partially corrects for random measurement error, see
Rigdon 2012), and inter-construct correlations are subject to
attenuation (Goodhue et al. 2012b; McDonald 1996).  Wold
(1982) noted that PLS estimates—in particular, path coeffi-
cients and indicator loadings—are not consistent, but only
“consistent at large”2 (i.e., both the number of observations
and of reflective indicators must be large).  Although
researchers have been aware of PLS’s lack of consistency as
an estimator of common factor models for over three decades
(Fornell and Bookstein 1982), the discussion of its
consequences has only recently gained momentum (Goodhue
et al. 2012a, 2012b; Henseler, Ringle, and Sarstedt 2014;
Marcoulides et al. 2012; Ringle et al. 2012).  Researchers
have acknowledged the lack of consistency in the sense that

Parameter estimates for paths between observed
variables and latent variable proxies are biased up-
ward in PLS (away from zero), while parameter
estimates for paths between proxies are attenuated
(Gefen et al. 2011, p. vi).

Such an underestimation of effects has the potential to
negatively influence a method’s ability to detect a significant
effect if it indeed exists in the population (the statistical
power).  For fields of research relying heavily on PLS and
other variance-based SEM techniques as a means of analyzing
relationships between reflective constructs, a potential lack of
statistical power would be a concern.  Since PLS analyses
“often serve as a basis for theory development, promising
research avenues might have been overlooked” (Hair, Sarstedt
et al. 2012, p. 424).  As a consequence, methodological
papers exploring the characteristics of PLS, such as Goodhue
et al. (2006, 2012b), Lu et al. (2011), or Reinartz et al. (2009),
have often focused on the statistical power thereof. Monte
Carlo simulations of the aforementioned papers largely
confirmed that the power of PLS is comparable to competing
techniques, such as covariance-based SEM or regression on
sum scores, which suggests that researchers need not worry
about the statistical power of PLS.  However, none of the
extant simulation studies have investigated whether sub-
stantial collinearity in the structural model influences the
adequacy and statistical power of path coefficient estimates
obtained through variance-based SEM.

Thus far, rather little attention has been paid to the possibility
that PLS, if used to estimate common factor models, over-
estimates path coefficients.  Inflated path coefficients increase
the danger of Type I errors (false positives), which means that
an effect may be considered significant even though it does
not actually exist in the population.  Monte Carlo simulations
either do not investigate the false positives (e.g., Lu et al.
2011; Reinartz et al. 2009) or come to the conclusion that PLS
does not produce more false positives for which the chosen
significance level allows (Goodhue et al. 2006, 2012b).  Only
a few papers have reported that variance-based SEM can find
effects that are not actually present.  Rigdon (1994, p. 379)
explicitly warned that “random measurement error, if ignored,
can have a profound impact on modeling results.”  Henseler
(2012) showed that variance-based SEM can inflate path
coefficients in the case of mediation, and Goodhue et al.
(2011) demonstrated that regression on sum scores and PLS
provide exaggerated t-values if multicollinearity is present
among independent latent variables.

In social and business science, false positives are often
regarded as a more severe problem than false negatives
(Cohen 1988).  This opinion is also the reason why confi-
dence levels of 95 percent or higher are often required,
whereas a statistical power level of 80 percent is deemed
acceptable (Goodhue et al. 2012b).  Therefore, cases in which
variance-based SEM detects a nonzero path coefficient, even
though the effect is actually zero, deserve further analysis.
We demonstrate the problem for a simple structural model
with one endogenous latent variable and two correlated exo-
genous latent variables, as depicted in Figure 1.  All latent
variables have reflective measurement models whose indica-
tors are measured with random error.  The equation of the
structural model is η = β1 @ ξ1 + β2 @ ξ2 + δ.  It can be alge-
braically derived (see Appendix A) that, if the true path
coefficient β1 is zero, the estimate β̂1 of the direct effect of the
latent variable ξ1 on the endogenous latent variable η is not
necessarily zero, even though it is determined based on popu-
lation data.  In this case, the path coefficient β̂1 of variance-
based SEM can be determined as follows (tildes denote the
construct scores):
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Although the true parameter value β1 is zero, the estimate β̂1

does not necessarily equate to zero.  Its value depends on the
degree of collinearity (as quantified by the correlation
between the exogenous variables’ scores, ξ̂1 and ξ̂2), the corre-

2Wold noted that the PLS estimators for path coefficients and loadings do not
tend in probability to the true values when the sample size increases, so they
are not consistent in the traditional sense.  He pointed out, however, that they
will tend to the true values when the number of reflective indicators increases
as well.  He introduced the term consistency at large to capture both
conditions.
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Figure 1.  A Model that Illustrates the Inconsistency Problem of Variance-Based SEM

lation between the scores of the second exogenous variable ξ2

and the endogenous variable η, and the reliability of the
second exogenous variable’s scores (ξ̂2).  As can be derived
from Equation 1, the bias is larger the less reliable the second
exogenous variable’s scores, the larger the correlation
between the scores of the second exogenous variable ξ2 and
the endogenous variable η, and the larger the collinearity. 
The effect can only be correctly estimated as zero if ξ2 is
measured without any measurement error (which implies that
its reliability equals one), if the second exogenous variable ξ2

and the endogenous variable η are completely uncorrelated,
or if there is no multicollinearity at all.

When using variance-based SEM, misleading estimates for
structural equation models with reflective measurement
models are neither innocuous nor infrequent (Goodhue et al.
2011).  If variance-based SEM underestimates the true
parameter, Type II errors are likely; if variance-based SEM
overestimates the true parameter, the Type I error is inflated. 
Inconsistent estimates can lead to erroneous conclusions and
must be considered potentially harmful to hypothesis testing. 
The often-held belief that an inconsistency of estimates is
unproblematic as long as researchers are only interested in the
sheer existence of an effect but not its size is wrong. 
Consistent estimates must thus be considered the sine qua non
of hypothesis testing.

In light of PLS’s lack of consistency when estimating
common factor models, researchers can choose between
continuing to use PLS while acknowledging its deficiencies
(Marcoulides et al. 2012), avoiding PLS completely (Rönkkö
and Ylitalo 2010), or correcting its estimates in some way
(Dijkstra 1981; Goodhue et al. 2012b).  Given that PLS has
some undisputed advantages, such as its ability to estimate
composite models (Henseler et al. 2014), its predictive
capabilities (Becker, Rai et al. 2013) or its lack of conver-
gence problems (Henseler 2010), it appears worthwhile to

pursue the third option.  The present article thus introduces a
pivotal improvement to traditional PLS, namely, consistent
partial least squares (PLSc).  PLSc corrects estimates of
reflectively measured constructs using a novel reliability
coefficient ρA.  It overcomes traditional PLS’ consistency
problems when estimating common factor models in the sense
that it consistently estimates the path coefficients, inter-
construct correlations, and indicator loadings.

We conducted a Monte Carlo simulation to explore PLSc’s
performance.  The outcome of this computational experiment
revealed that the bias of PLSc is comparable with covariance-
based SEM, and that PLSc is nearly as efficient as FIML
(full-information maximum likelihood) for medium to large
sample sizes.  Similar to covariance-based SEM, PLSc avoids
the excessive amount of Type I and Type II errors that can
occur if traditional PLS or regression on sum scores is applied
to estimate structural equation models with reflective mea-
surement models.  Moreover, we find that the statistical power
of PLSc is only slightly lower than that of FIML, and that
PLSc does not produce an undue number of false positives
when the data are not normally distributed.  We discuss the
implications of our findings for IS research and provide
guidelines for choosing between structural equation modeling
techniques.

Consistent Partial Least
Squares Path Modeling

A Consistent Reliability Coefficient for PLS

Consistent PLS (PLSc) was first mathematically developed by
Dijkstra (1981, 2010, 2011, 2014).  The logic of PLSc departs
from the suggestion of Goodhue et al. (2012b, p. 996) “to
‘adjust’ the attenuated regression path estimates to the correct
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value using the reliability of the constructs” in that it uses
Nunnally and Bernstein’s equation (1994, pp. 241, 257):

(2)r
r

r r
xy
c xy

xx yy

=
⋅

in which  is the consistent correlation between two con-rxy
c

structs x and y; rxy is the correlation between the constructs’
scores; and rxx and ryy represent the constructs’ reliability.
Equation 2 underlines the importance of determining the
reliability of PLS’s construct scores:  Consistent estimates for
correlations between reflectively measured latent variables as
well as derived coefficients, such as partial correlations, part
correlations, or path coefficients, can only be obtained if
viable reliability coefficients are available.  The major chal-
lenge of this approach is to consistently estimate the
constructs’ reliability.  As we will show, the two reliability
coefficients that are typically applied in conjunction with
PLS, namely Cronbach’s coefficient alpha (Cronbach 1951)
and composite reliability (Chin 2010), are not consistent
themselves.  Thus, even if researchers corrected for attenua-
tion, the lack of a consistent reliability coefficient would
prevent them from achieving their aim (i.e., obtaining consis-
tent estimates of the relationships between latent variables).

Cronbach’s alpha evaluates the indicator variances and
covariances to determine the internal consistency reliability.
It is a consistent estimate of a linear composite’s reliability if
the composite’s indicators form a unidimensional set (Gerbing
and Anderson 1988) and their covariances are equal (tau-
equivalence; see Lord and Novick 1968).  If this assumption
of tau-equivalence is not met or if the sample size is small,
Cronbach’s alpha will underestimate the reliability (Sijtsma
2009; Yuan and Bentler 2002).  These characteristics of
Cronbach’s alpha interfere with PLS and other variance-based
SEM techniques in two ways.  First, variance-based SEM is
preferred to covariance-based structural equation modeling
when the sample size is small (Chin and Newsted 1999).
Second, variance-based structural equation modeling neither
tests nor ensures the tau-equivalence of indicators.  Conse-
quently, Cronbach’s alpha is unlikely to consistently estimate
the reliability of PLS construct scores.

In reaction to Cronbach’s alpha’s inappropriateness, Chin
(1998b) suggested the composite reliability ρc (Heise and
Bohrnstedt 1970) as a more appropriate measure of reliability.
To determine the reliability of construct scores, composite
reliability assesses the indicator loadings.  According to Chin
(1998a), “ρc is a closer approximation [of reliability] under
the assumption that the parameter estimates are accurate.”
However, the assumption of parameter accuracy is unlikely to
hold, because the indicator loadings provided by PLS are

known to be upward-biased (Dijkstra 1983).  Consequently,
composite reliability is likely to overestimate the actual
reliability of construct scores.

In light of the deficiencies of extant reliability coefficients, we
propose a new and consistent reliability coefficient for PLS:
ρA.  Index “A” was chosen because the construct scores are
generated by means of Mode A of PLS.  The new reliability
coefficient ρA resides on two pillars.  First, unlike composite
reliability, ρA evaluates a construct’s weights, not its loadings. 
This design choice was motivated by Dijkstra’s (2010)
finding that the probability limits (roughly, the values
obtained for the population) of the construct weights obtained
by means of Mode A are proportional to the true loadings. 
Second, ρA is determined such that the off-diagonal elements
of a latent variable’s indicator correlation matrix are
reproduced as well as possible in a least squares sense.  We
define ρA as follows:

(3)( ) ( )( )
( )( )wwwwww
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In Equation 3, ŵ is the estimated weight vector of the latent
variable (the dimension of ŵ is the number of indicators
directly associated with the latent variable), and S is the
empirical covariance matrix of the latent variable’s indicators. 
Appendix B contains a detailed derivation of Equation 3.
Having a consistent reliability measure for PLS construct
scores available paves the way for PLSc.

The Four Steps of Consistent PLS

We introduce PLSc as a procedure consisting of four steps.
(1) Traditional PLS is applied to provide latent variable scores
and to estimate latent variable correlations and weights. 
(2) The new reliability coefficient ρA is determined for each
reflective construct.  (3) ρA can be used to correct the original
latent variable correlations for attenuation and thus obtain
consistent latent variable correlations.  (4) Finally, consistent
path coefficients are estimated in a least squares manner
based on the consistent latent variable correlations.  Figure 2
visualizes these constituting steps of PLSc.  We describe each
step in more detail below.

Step 1:  Traditional PLS.  As an input, PLSc requires corre-
lations between latent variable scores and indicator weights,
which are provided by traditional PLS.  Latent variable scores
(a side product of traditional PLS) are not essential for PLSc,
but may be useful for predictive purposes (Becker et al.
2013a) or for add-on analyses, such as detecting unobserved

300 MIS Quarterly Vol. 39 No. 2/June 2015



Dijkstra & Henseler/Consistent Partial Least Squares Path Modeling

Figure 2.  The Four Steps of Consistent PLS

heterogeneity (e.g., Becker, Rai, and Rigdon 2013).  An
integral part of the traditional iterative algorithm of PLS is the
inner approximation, in which inner proxies are created for
each latent variable (Lohmöller 1989; Wold 1982).  This is a
unique feature of PLS that does not emerge in other variance-
based SEM techniques.  The inner proxy of a focal latent
variable is a certain weighted sum of the scores of other latent
variables in the model.  It forms the basis for estimating the
indicator weights, which in turn are the major ingredient of
ρA.  The type of weighting depends on the inner weighting
scheme.  Three inner weighting schemes are typically em-
ployed in PLS:  the centroid scheme, the factor scheme, and
the path-weighting scheme.  Whereas the factor scheme uses
the correlations between construct scores as weights, the
centroid scheme employs the sign of the correlations.  The

path-weighting scheme uses regression weights for predictors
and correlations for other constructs.  It should be noted that
the choice of weighting scheme does not affect the consis-
tency and asymptotic normality of PLSc.

Step 2:  Estimating reliability.  For each reflective construct,
the reliability of the construct scores must be estimated using
the new reliability coefficient ρA, as expressed in Equation 3.
Not only are the obtained reliability coefficients an integral
part of PLSc, they should also be reported to the reviewers
and readers of an empirical study to allow for comparisons
with established thresholds of reliability (Nunnally and
Bernstein 1994).  It should be noted that it does not make
sense to calculate ρA for constructs that are measured using
formative measurement models or composite models, be-
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cause, in these cases, the inter-indicator correlations are not
informative regarding indicator reliability and thus random
measurement errors.  In the tradition of assuming that random
measurement error3 does not affect formative measures and
composites, ρA could be set equal to 1 when PLS is used to
estimate composite models.

Step 3:  Correction for attenuation.  Consistent latent
variable correlations are obtained using ρA to correct the
original latent variable correlations for attenuation.  For every
pair of latent variable scores η~i and η~j, the consistent
correlation cor(ηi, ηj) is calculated as follows:

(4)( ) ( )
( ) ( )ji

ji
ji

η~ρη~ρ

η~,η~cor
η,ηcor

AA ⋅
=

The correction for attenuation is also required if one of the
latent variables, ηi or ηj, is formative.  If both latent variables
are formative, no correction is required.

Step 4:  Estimating consistent coefficients.  Finally, consis-
tent path coefficients are estimated based on the consistent
latent variable correlations.  If we make the common assump-
tion that the path model is recursive, we can estimate the path
coefficients for each endogenous latent variable by means of
ordinary least squares (OLS) regression,4 that is, by using

(6)XyX rRβ 1−=

In this equation, β denotes a vector of path coefficients, RX

stands for the correlation matrix of the independent variables
of the structural equation, and rXy is the vector of correlations
between the dependent variable and the independent vari-
ables.  Equation 6 is the regular OLS equation for stan-
dardized coefficients based on correlations.

Consistent loadings.  If the ρA and weight estimates are
available, it is possible to estimate the loadings consistently
(see Appendix B for the derivation).  For the vector of
loadings λ of a latent variable, we have:

(5)
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A Small Example Demonstrating
the Viability of Consistent PLS

We applied a small example model, as depicted in Figure 3,
to demonstrate the behavior of PLSc.  The true model
consisted of two moderately correlated latent variables with
three indicators each and different loading patterns.  We
generated data that meets the true model’s parameterization
exactly.

We then estimated the model parameters both with traditional
PLS and consistent PLS.  The typical pattern of results was
found for traditional PLS (see Dijkstra 1983):  The loadings
were overestimated, whereas the inter-construct correlation
was attenuated.  We could confirm the anticipated results for
PLSc:  It perfectly recovers the true parameter values; that is,
the estimates for the loadings as well as the inter-construct
correlation are equal to the true parameters.  This example
provides first evidence that PLSc is Fisher consistent, which
means that the method provides the true parameters if applied
to the population data.

This example also visualizes the differences between the
reliability coefficients.  Whereas Cronbach’s alpha under-
estimates the reliability of both latent variable scores,
composite reliability overestimates their reliability.  By con-
trast, the new reliability coefficient ρA reproduces the actual
reliability of construct scores exactly.

A Simulation Study

Design of the Monte Carlo Simulation

We conducted a Monte Carlo simulation to compare PLSc to
plausible alternatives in the literature.  MIS research typically
relies on one of three techniques to test multiple hypotheses
between latent variables:  PLS, (multiple) regression on sum
scores, and covariance-based SEM.  Covariance-based SEM
itself is a family of methods.  Of these, we considered five
techniques that we deemed to represent the spectrum of
available techniques:  full-information maximum likelihood
(FIML), generalized least squares (GLS), weighted least
squares (WLS), diagonally weighted least squares (DWLS),
and unweighted least squares (ULS).  We explored how—
compared to the alternative techniques—PLSc performs in

3We acknowledge that random measurement error is also likely to be an issue
in formative measurement, but the literature on formative measurement does
not present possible solutions.

4In the case of non-recursive models, researchers should apply an appropriate
simultaneous equations technique, of which two-stage least squares (2SLS)
is the simplest choice, instead of OLS, to obtain consistent estimates (Dijkstra
and Henseler 2015).
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Figure 3.  Example Model Illustrating the Behavior of PLSc (Model 3)

terms of convergence behavior, parameter consistency, and
inference statistics.  Convergence behavior reflects the cer-
tainty with which researchers can expect a particular
technique to provide estimates:  Does a technique lead to a
solution?  Parameter consistency refers to the bias of path
coefficients:  To what extent can the various techniques
recover the true parameters?  What parameter value can be
expected if several samples are drawn from a population?
Finally, inference statistics encompass the occurrence of Type
I and Type II errors:  Does a particular technique maintain the
predefined alpha level?  And what is its statistical power?
We designed our computational experiment such that it could
provide answers to all of these questions.

We selected a population model for the simulation, as
depicted in Figure 4.  Typically, a population model used in
a Monte Carlo simulation should resemble those commonly
estimated in applied research (Paxton et al. 2001).  Our
population model consists of five latent variables, which is

close to what Shah and Goldstein (2006) report as the average
number of constructs used in covariance-based SEM.  More-
over, it is a common configuration for simulation studies on
structural equation modeling (see Goodhue et al. 2006; Jarvis
et al. 2003).  The reflective measurement models of our five
constructs varied with respect to the number of indicators (2,
4, and 6), as well as construct reliability (approximately 0.7,
0.8, and 0.9).  The structural model contained six effects,
whose strengths were deliberately chosen:

1. The effect of ξ2 on η3 (γ23) was zero and was not affected
by multicollinearity.  We expected all techniques to
estimate this effect consistently.

2. The effect of η3 on η5 was medium-sized (β35 = 0.35) and
not affected by multicollinearity.  We expected PLSc and
covariance-based SEM to estimate this effect consis-
tently, whereas the estimates of traditional PLS and
regression were expected to be attenuated.  We assumed
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Figure 4.  Population Model for the Simulation

that this attenuation would be rather slight because the
latent variables η3 and η5 are measured relatively reliably.

3. The effect of ξ2 on η4 was strong (γ24 = 0.70) and sub-
stantially affected by multicollinearity due to the large
correlation between ξ1 and ξ2 (φ12 = 0.70).  We expected
PLSc and covariance-based SEM to estimate this effect
consistently, whereas the estimates of traditional PLS and
regression were expected to be attenuated.  We assumed
that this attenuation would be strong because the
reliability of the latent variables ξ2 and η4 is only just
acceptable.

4. The effect of ξ2 on η5 was strong but negative
(γ24 = !0.70) and substantially affected by multicol-
linearity.  We expected PLSc and covariance-based SEM
to estimate this effect consistently, whereas the estimates
of traditional PLS and regression were expected to be
attenuated.  We moreover predicted that the attenuation
would be strong because the reliability of the latent
variable ξ2 is only just acceptable.

5. The effect of ξ1 on η4 (γ14) was zero and substantially
affected by multicollinearity.  We expected PLSc and
covariance-based SEM to estimate this effect consis-
tently, whereas the estimates of traditional PLS and
regression were expected to be biased upward, making
them prone to inflated Type I errors.

6. The effect of ξ1 on η5 was small (γ15 = 0.22) and sub-
stantially affected by multicollinearity.  We expect PLSc
and covariance-based SEM to estimate this effect
consistently, whereas the estimates of traditional PLS and
regression were assumed to be biased downward, making
them prone to inflated Type II errors.

We created both normal and non-normal data.  To study the
effects of non-normality, we used the customary Fleishman–
Vale–Maurelli procedure (Fleishman 1978; Vale and Maurelli
1983), which means that the standard normal latent variables
were replaced by well-chosen linear combinations of powers
of standard normal variables, whose correlations are such that
the new latent variables have the same correlations as the
original latent variables.  Well-chosen means that specified
requirements concerning the non-normal skewness and
(excess) kurtosis are satisfied.  If the suggested transfor-
mations leave the independence between latent variables and
idiosyncratic errors intact, the asymptotic robustness of
normal theory statistics may apply and lead the researcher to
mistakenly believe that normality is not an issue (see Hu et al.
1992).  We followed the latter authors in that we simply
rescaled the vector of indicators by multiplying each compo-
nent by the same independent random factor.  Hu et al. (1992)
chose , whose squared value has expectation 1.  This( )3 52χ
approach deliberately destroys the independence between the
latent and idiosyncratic variables but leaves Σ and the linear
relationships (as well as the symmetry) undisturbed.  The
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kurtosis of the indicators increases by six.  The same effects
can be obtained by multiplying each component by a standard
normal variable Z, which appears to yield representative
samples for smaller sizes.  Therefore, this approach was used. 
In addition, we performed multiplication by means of a
positive scale factor , whose squared value also( )abs Z ⋅ π 24

has expectation 1.  This multiplication increases the kurtosis
by a lesser amount, namely, 3π'2 – 3 = 1.7124.

In addition to the distribution of data, we varied the number
of observations.  Taking into account that PLS is typically
applied if the sample size is rather small, we chose sample
sizes of 100, 200, and 500 observations.  Overall, the compu-
tational experiment consisted of six cells:  two levels of data
distribution × three levels of sample size.  We generated
1,000 datasets per cell.

We estimated the structural equation model for each dataset
using full-information maximum likelihood, generalized least
squares, weighted least squares, diagonally weighted least
squares, unweighted least squares, regression on sum scores,
traditional PLS (using the factor weighting scheme), and
PLSc.  All computations were conducted using R 3.0.2 (R
Core Team 2013).  We relied on our own implementation for
traditional and consistent PLS, whereas we used the lavaan
package, version 0.5-15 (Rosseel 2012), as an implementation
of the five covariance-based SEM techniques.  To avoid
confounding differences in techniques and differences in
parameterization (for a profound discussion on this matter, see
Goodhue et al. 2012a; Marcoulides et al. 2012), we kept the
parameterization across techniques as similar as possible (see
Table 1).  The only exception was the technique-induced
difference to determine the way in which indicator error
covariances would be treated:  Whereas in covariance-based
SEM the indicator error covariances are fixed to zero, the
other techniques simply assume them to be zero, although
they may ultimately turn out to be nonzero.

Results

The simulation study allowed us to compare the performance
of PLSc, covariance-based SEM (FIML, GLS, WLS, DWLS,
and ULS), traditional PLS, and a (multiple) regression on sum
scores.  A first issue that emerged relates to the convergence
behavior of the respective techniques.  Based on prior
research (Henseler 2010; Jöreskog and Lawley 1968), we
expected there to be substantially more cases of non-
convergence for covariance-based SEM than for the other
techniques.

As Table 2 shows, the simulation study only partly confirmed
our expectation.  Six out of the eight considered techniques,

among them PLSc, demonstrated an excellent convergence
behavior and provided estimates more in than 99 percent of
the simulation runs.  In our computational experiment, FIML
performed substantially better than in comparable studies (see
Reinartz et al. 2009).  Only two techniques stood out as
negative:  GLS and WLS.  GLS faces a substantial amount of
nonconvergence in the case of a small sample size, par-
ticularly if the data are not normally distributed.  WLS is not
executed at all for sample sizes smaller than 210 observa-
tions.5  For the remaining analyses, we only included those
simulation runs in which a technique converged, which may
mean a slightly reduced effective sample size in some
experimental cells.

Second, we compared the eight techniques with regard to their
consistency.  We expected PLSc to provide consistent
estimates, just like covariance-based SEM, but to clearly
outperform traditional PLS and regression on sum scores.  To
empirically verify our expectation, we compared the tech-
niques’ raw biases.  Raw bias (RB) is defined as follows:

(7)RB = −
=1

1T tt

T θ θ

in which θ is the true value of the model parameter of interest, 
θ̂t  is its estimate in the tth simulation run, and T is the number
of simulation runs per experimental condition.  We show the
raw bias of each technique under every condition in Table 3.

Overall, we could confirm that the raw bias of PLSc is
comparable to various covariance-based SEM techniques’ raw
biases.  PLSc as well as the five covariance-based SEM tech-
niques exhibited neither significant nor substantial biases for
any of the six effects in the population model.  Moreover, the
raw bias of PLSc estimates and its standard deviation de-
creased, with an increase in sample size, which illustrates the
consistency of PLSc.  The same was true for the covariance-
based SEM techniques.  In contrast, for traditional PLS and
regression on sum scores, such a decrease in raw bias could 
only be observed for the effect γ23, which is neither affected
by multicollinearity nor attenuation.  The results were thus
mainly driven by the consistency.  The consistent techniques,
PLSc and covariance-based SEM, formed a group of six
techniques, whose estimates were distributed similarly.  The
expected values for all six effects were close to the true
parameter values.  The inconsistent techniques, traditional
PLS and regression on sum scores, formed another group in
which the expected values of traditional PLS estimates were

5WLS requires at least Nmin = ½ v (v + 1) observations, where v is the number
of observed variables.  Our simulation model has 20 observed variables.
Thus, Nmin is 210.
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Table 1.  Parameterization for the Simulation Study

Parameters Consistent PLS Traditional PLS
Regression on Sum

Scores
Covariance-Based

SEM

Path coefficients free free free free

Latent variable variances fixed to 1 fixed to 1 fixed to 1 fixed to 1

Indicator weights free free equality constraint free

Indicator loadings free free free free

Indicator error variances free free free free

Disturbance term
covariances

assumed to be 0 assumed to be 0 assumed to be 0 fixed to 0

Indicator error covariances assumed to be 0 assumed to be 0 assumed to be 0 fixed to 0

Table 2.  Occurrence of Non-Convergence

Distribution Observations PLSc FIML GLS WLS DWLS ULS PLS OLS

Normal

100 0.0% 0.0% 2.3% 100.0% 0.2% 0.0% 0.0% 0.0%

200 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

500 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Non-normal

100 0.1% 0.9% 12.6% 100.0% 0.9% 0.6% 0.1% 0.0%

200 0.0% 0.0% 0.3% 100.0% 0.2% 0.0% 0.0% 0.0%

500 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 3.  Raw Bias (Expected minus True Value) of PLSc, FIML, GLS, WLS, DWLS, ULS, PLS, and OLS

Distri-

bution

Obser-

vations

Tech-

nique

ξ2 6 η3

γ23 = 0.00

η3 6 η5

β35 = 0.35

ξ2 6 η4

γ24 = 0.70

ξ2 6 η5

γ25 = !0.70

ξ1 6 η4

γ14 = 0.00

ξ1 6 η5

γ15 = 0.22

Normal

100

PLSc !0.0111 (0.1644) 0.0054 (0.1158) 0.0231 (0.1971) !0.0312 (0.2097) !0.0184 (0.1992) 0.0139 (0.2033)

FIML 0.0021 (0.1264) !0.0024 (0.0957) 0.0212 (0.2090) !0.0223 (0.2082) !0.0277 (0.2116) 0.0210 (0.2058)

GLS 0.0044 (0.1553) 0.0000 (0.1179) 0.0115 (0.2624) !0.0185 (0.2643) 0.0056 (0.2617) 0.0012 (0.2596)

WLS ― ― ― ― ― ―

DWLS !0.0055 (0.1324) !0.0024 (0.0989) 0.0207 (0.2153) !0.0359 (0.2205) !0.0269 (0.2167) 0.0304 (0.2173)

ULS !0.0052 (0.1325) !0.0013 (0.0986) 0.0237 (0.2098) !0.0368 (0.2152) !0.0281 (0.2116) 0.0303 (0.2116)

PLS !0.0087 (0.1283) !0.0373 (0.0844) !0.2736 (0.0930) 0.2432 (0.0980) 0.1574 (0.1052) !0.2152 (0.1028)

OLS 0.0019 (0.1027) !0.0570 (0.0828) !0.3049 (0.0962) 0.2700 (0.1013) 0.1657 (0.1073) !0.2238 (0.1047)

200

PLSc !0.0089 (0.1073) 0.0029 (0.0730) 0.0071 (0.1349) !0.0079 (0.1309) !0.0033 (0.1321) 0.0017 (0.1309)

FIML !0.0014 (0.0854) !0.0004 (0.0641) 0.0068 (0.1345) !0.0052 (0.1257) !0.0074 (0.1323) 0.0052 (0.1275)

GLS !0.0071 (0.0969) !0.0004 (0.0704) 0.0041 (0.1443) !0.0113 (0.1366) 0.0084 (0.1464) !0.0077 (0.1383)

WLS ― ― ― ― ― ―

DWLS !0.0048 (0.0868) !0.0011 (0.0677) 0.0048 (0.1385) !0.0089 (0.1376) !0.0062 (0.1355) 0.0078 (0.1398)

ULS !0.0047 (0.0868) !0.0007 (0.0676) 0.0071 (0.1371) !0.0107 (0.1369) !0.0075 (0.1345) 0.0091 (0.1395)

PLS !0.0068 (0.0837) !0.0398 (0.0556) !0.2814 (0.0661) 0.2500 (0.0687) 0.1623 (0.0693) !0.2142 (0.0729)

OLS !0.0003 (0.0703) !0.0548 (0.0569) !0.3059 (0.0679) 0.2712 (0.0698) 0.1700 (0.0706) !0.2239 (0.0746)

500

PLSc !0.0009 (0.0657) 0.0019 (0.0451) 0.0054 (0.0863) !0.0087 (0.0799) !0.0041 (0.0876) 0.0049 (0.0782)

FIML 0.0013 (0.0549) 0.0000 (0.0395) 0.0047 (0.0853) !0.0076 (0.0771) !0.0053 (0.0862) 0.0064 (0.0763)

GLS !0.0024 (0.0574) !0.0003 (0.0410) 0.0056 (0.0884) !0.0109 (0.0786) !0.0007 (0.0890) 0.0017 (0.0785)

WLS !0.0023 (0.0754) 0.0000 (0.0521) 0.0055 (0.1081) !0.0127 (0.0970) !0.0016 (0.1070) 0.0046 (0.0962)

DWLS 0.0000 (0.0560) !0.0002 (0.0423) 0.0041 (0.0874) !0.0083 (0.0814) !0.0046 (0.0886) 0.0064 (0.0806)

ULS 0.0000 (0.0560) 0.0001 (0.0421) 0.0050 (0.0869) !0.0089 (0.0813) !0.0052 (0.0879) 0.0068 (0.0806)

PLS !0.0007 (0.0511) !0.0421 (0.0350) !0.2829 (0.0441) 0.2496 (0.0436) 0.1617 (0.0478) !0.2117 (0.0461)

OLS 0.0019 (0.0454) !0.0535 (0.0360) !0.3026 (0.0447) 0.2663 (0.0441) 0.1683 (0.0479) !0.2216 (0.0462)
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Table 3.  Raw Bias (Expected minus True Value) of PLSc, FIML, GLS, WLS, DWLS, ULS, PLS, and OLS
(Continued)

Distri-

bution

Obser-

vations

Tech-

nique

ξ2 6 η3

γ23 = 0.00

η3 6 η5

β35 = 0.35

ξ2 6 η4

γ24 = 0.70

ξ2 6 η5

γ25 = !0.70

ξ1 6 η4

γ14 = 0.00

ξ1 6 η5

γ15 = 0.22

Non-

normal

100

PLSc !0.0209 (0.2154) 0.0195 (0.1692) 0.0234 (0.2586) !0.0564 (0.3238) !0.0195 (0.2455) 0.0352 (0.3007)

FIML !0.0012 (0.1513) 0.0046 (0.1173) 0.0310 (0.4889) !0.0464 (0.3728) !0.0450 (0.4869) 0.0500 (0.3661)

GLS 0.0122 (0.2035) 0.0160 (0.1618) !0.0013 (0.4672) !0.0173 (0.5676) 0.0027 (0.4473) 0.0141 (0.5532)

WLS ― ― ― ― ― ―

DWLS !0.0115 (0.1580) 0.0056 (0.1235) 0.0185 (0.2875) !0.0551 (0.3367) !0.0304 (0.2806) 0.0509 (0.3339)

ULS !0.0108 (0.1606) 0.0088 (0.1240) 0.0284 (0.2801) !0.0577 (0.3246) !0.0346 (0.2721) 0.0508 (0.3211)

PLS !0.0150 (0.1614) !0.0243 (0.1041) !0.2727 (0.1211) 0.2402 (0.1243) 0.1625 (0.1205) !0.2143 (0.1207)

OLS !0.0008 (0.1270) !0.0496 (0.1033) !0.3088 (0.1238) 0.2718 (0.1241) 0.1689 (0.1217) !0.2226 (0.1249)

200

PLSc !0.0029 (0.1381) 0.0091 (0.0944) 0.0096 (0.1724) !0.0166 (0.1664) !0.0036 (0.1690) 0.0082 (0.1584)

FIML 0.0043 (0.1083) !0.0013 (0.0819) 0.0054 (0.1828) !0.0112 (0.1659) !0.0093 (0.1779) 0.0152 (0.1621)

GLS !0.0003 (0.1260) !0.0014 (0.0935) 0.0024 (0.1992) !0.0160 (0.1770) 0.0142 (0.1966) !0.0051 (0.1782)

WLS ― ― ― ― ― ―

DWLS !0.0004 (0.1099) !0.0009 (0.0860) 0.0034 (0.1838) !0.0146 (0.1789) !0.0065 (0.1784) 0.0161 (0.1741)

ULS 0.0006 (0.1117) 0.0014 (0.0865) 0.0091 (0.1828) !0.0206 (0.1782) !0.0102 (0.1786) 0.0202 (0.1737)

PLS !0.0023 (0.1071) !0.0370 (0.0701) !0.2808 (0.0855) 0.2494 (0.0849) 0.1654 (0.0911) !0.2145 (0.0874)

OLS 0.0042 (0.0876) !0.0551 (0.0727) !0.3085 (0.0878) 0.2733 (0.0878) 0.1732 (0.0920) !0.2226 (0.0905)

500

PLSc !0.0021 (0.0840) 0.0025 (0.0577) 0.0076 (0.1089) !0.0074 (0.0954) !0.0043 (0.1065) 0.0024 (0.0930)

FIML 0.0032 (0.0687) 0.0002 (0.0505) 0.0070 (0.1090) !0.0064 (0.0945) !0.0070 (0.1056) 0.0053 (0.0940)

GLS !0.0010 (0.0729) !0.0005 (0.0529) 0.0064 (0.1136) !0.0083 (0.0962) 0.0022 (0.1107) !0.0056 (0.0952)

WLS 0.0003 (0.1004) !0.0001 (0.0694) 0.0008 (0.1418) !0.0154 (0.1312) !0.0016 (0.1341) 0.0057 (0.1265)

DWLS 0.0001 (0.0699) !0.0004 (0.0541) 0.0054 (0.1125) !0.0076 (0.1007) !0.0059 (0.1097) 0.0063 (0.0997)

ULS 0.0002 (0.0707) 0.0004 (0.0539) 0.0072 (0.1109) !0.0097 (0.1000) !0.0068 (0.1082) 0.0075 (0.0991)

PLS !0.0016 (0.0655) !0.0413 (0.0451) !0.2822 (0.0541) 0.2501 (0.0525) 0.1614 (0.0560) !0.2130 (0.0554)

OLS 0.0016 (0.0571) !0.0541 (0.0463) !0.3032 (0.0550) 0.2682 (0.0529) 0.1681 (0.0566) !0.2224 (0.0557)

Note:  Standard deviations in parentheses.  Raw bias values in bold are significantly different from zero (p < .05, two-sided test).

slightly closer to the true parameters compared to regression
on sum scores.  The estimates of the effect of η3 on η5 were
attenuated by traditional PLS and regression on sum scores,
whereas PLSc and covariance-based SEM estimated this
effect consistently.  A similar picture emerged for the effects
of ξ2 on η4 and of ξ2 on η5.  Again, PLSc and covariance-
based SEM estimated these effects consistently.  In these two
instances, the attenuation encountered by traditional PLS and
regression on sum scores was even more pronounced.  PLSc
and covariance-based SEM consistently estimated the effect
of ξ1 on η4 as zero, whereas the estimates of traditional PLS
and regression were biased upward, making them prone to
inflated Type I errors.  Finally, whereas PLSc and covariance-
based SEM estimated the effect of ξ1 on η5 consistently,
traditional PLS and regression tended to underestimate this
effect, which rendered these two techniques prone to inflated
Type II errors.

Because the occurrence of Type I and Type II errors is a
pivotal problem of hypothesis testing, we examined the sta-
tistical inference provided by the eight techniques.  Because

FIML is a parametric approach, we expected it to be more
powerful, but also more dependent on normality than PLSc as
a non-parametric approach.  This outcome coincides with
Jöreskog’s (1983) finding that maximum likelihood estimates
are more efficient than other covariance-based SEM tech-
niques.  Moreover, in line with Goodhue et al. (2012b), we
did not expect strong differences between techniques if there
was no multicollinearity.  However, if multicollinearity was
present, we expected that, in some instances, traditional PLS
and regression on sum scores would exhibit an unacceptable
number of false positives, whereas in other instances, they
would show a substantially lower statistical power.

Table 4 provides an overview of the empirically achieved
statistical power of each technique.  For each of the experi-
mental conditions (i.e., for each combination of sample size
and data distribution), the numbers in the table represent the
proportion of simulation runs for which a particular technique
identified a certain effect as significant (using a significance
level of α = 0.05).
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Table 4.  Statistical Power of PLSc, FIML, GLS, WLS, DWLS, ULS, PLS, and OLS

Distribution
Obser-
vations Technique

ξ2 6 η3

γ23 = 0.00
η3 6 η5

β35 = 0.35
ξ2 6 η4

γ24 = 0.70
ξ2 6 η5

γ25 = !0.70
ξ1 6 η4

γ14 = 0.00
ξ1 6 η5

γ15 = 0.22

Normal

100

PLSc 5.4% 56.8% 73.2% 71.4% 2.1% 16.1%

FIML 2.0% 91.4% 73.7% 84.3% 4.6% 20.4%

GLS 2.3% 76.9% 63.9% 74.9% 6.5% 15.0%

WLS ―― ―― ―― ―― ―― ――

DWLS 51.8% 99.2% 83.7% 94.0% 1.2% 5.8%

ULS 52.1% 99.2% 85.5% 95.2% 1.6% 8.2%

PLS 5.4% 80.6% 89.3% 89.8% 33.3% 5.0%

OLS 4.8% 91.0% 96.0% 98.4% 35.2% 5.3%

200

PLSc 4.5% 95.8% 99.3% 99.5% 3.2% 42.9%

FIML 2.9% 100.0% 99.5% 99.7% 3.7% 45.4%

GLS 3.7% 99.6% 99.0% 99.7% 5.3% 37.1%

WLS ―― ―― ―― ―― ―― ――

DWLS 51.2% 100.0% 99.6% 99.9% 1.3% 28.9%

ULS 50.9% 100.0% 99.6% 99.9% 1.4% 36.3%

PLS 4.5% 97.9% 99.9% 99.9% 61.2% 5.4%

OLS 4.3% 99.8% 99.9% 100.0% 64.2% 5.9%

500

PLSc 5.1% 100.0% 100.0% 100.0% 4.4% 83.9%

FIML 4.1% 100.0% 100.0% 100.0% 5.1% 87.2%

GLS 4.4% 100.0% 100.0% 100.0% 6.1% 83.3%

WLS 24.3% 100.0% 100.0% 100.0% 21.4% 87.5%

DWLS 54.7% 100.0% 100.0% 100.0% 2.0% 85.0%

ULS 54.1% 100.0% 100.0% 100.0% 2.4% 87.7%

PLS 5.1% 100.0% 100.0% 100.0% 92.5% 5.5%

OLS 4.9% 100.0% 100.0% 100.0% 94.9% 5.2%

Non-
normal

100

PLSc 5.0% 24.9% 34.4% 24.9% 1.2% 3.7%

FIML 4.9% 87.2% 63.9% 78.6% 8.9% 25.0%

GLS 7.8% 70.9% 51.3% 61.0% 10.4% 19.4%

WLS ―― ―― ―― ―― ―― ――

DWLS 48.3% 94.3% 56.3% 74.6% 0.6% 1.7%

ULS 58.2% 96.6% 76.7% 89.2% 2.9% 12.3%

PLS 5.0% 62.6% 69.5% 70.9% 25.4% 4.4%

OLS 12.4% 87.7% 91.9% 94.9% 39.2% 10.3%

200

PLSc 5.2% 74.8% 82.2% 80.5% 2.3% 19.3%

FIML 8.2% 98.5% 96.7% 99.4% 11.0% 46.4%

GLS 9.9% 96.8% 94.2% 97.9% 12.5% 35.3%

WLS ―― ―― ―― ―― ―― ――

DWLS 49.8% 99.7% 93.0% 98.2% 1.8% 7.9%

ULS 60.2% 99.9% 98.5% 99.7% 6.1% 37.7%

PLS 5.2% 90.6% 95.5% 95.6% 46.8% 5.6%

OLS 11.0% 98.7% 99.7% 99.9% 60.5% 11.2%

500

PLSc 6.7% 99.8% 99.8% 99.8% 3.5% 61.5%

FIML 10.9% 100.0% 100.0% 100.0% 11.3% 81.3%

GLS 11.7% 100.0% 100.0% 100.0% 11.7% 76.8%

WLS 25.1% 99.9% 99.8% 100.0% 19.8% 71.9%

DWLS 53.1% 100.0% 99.9% 100.0% 1.2% 57.1%

ULS 61.7% 100.0% 100.0% 100.0% 6.3% 83.8%

PLS 6.7% 99.8% 100.0% 100.0% 80.7% 5.5%

OLS 13.0% 100.0% 100.0% 100.0% 91.0% 9.7%

308 MIS Quarterly Vol. 39 No. 2/June 2015



Dijkstra & Henseler/Consistent Partial Least Squares Path Modeling

Our analysis began with the situation of normal-distributed
data.  If no multicollinearity was present, five of the eight
techniques maintained an acceptable level of Type I error for
a population effect of zero (γ23).  In contrast, ULS and DWLS
found a significant effect in more than half of all simulation
runs, and WLS still found a significant effect in almost a
quarter of the simulation runs.6  If there was a medium effect
in the population model (as with β35), all techniques were able
to detect the effect in the majority of cases.  For medium to
large sample sizes, the statistical power of all the techniques
was close to 100 percent.  However, for small sample sizes,
the statistical power decreased, and, in particular, PLSc had
a somewhat lower statistical power than the other techniques. 
A similar result was found for strong effects under high levels
of multicollinearity (as with γ24 and γ25).  Here, PLSc was
comparable to GLS, and almost as powerful as FIML.

The most important insights referred to small or zero effects
under multicollinearity.  We found that neither PLS nor
regression was capable of detecting a small effect (γ15),
regardless of the sample size.  In contrast, although PLSc and
the covariance-based SEM techniques had a low statistical
power for small sample sizes, the statistical power reached 80
percent in the case of 500 observations.  In other words, the
inconsistent techniques of PLS and regression evoke an undue
number of Type II errors, whereas the consistent techniques
do not.  A different phenomenon was observed for the zero
effect under the multicollinearity condition (γ14).  Whereas
PLSc and the covariance-based SEM techniques (except
WLS) maintained acceptable levels of Type I error, PLS and
regression found significant effects in more than 30 percent of
the cases for small sample sizes and, in more than 90 percent
of the cases, for large sample sizes.  In other words, the
inconsistent techniques, traditional PLS and regression on
sum scores, evoked an undue number of Type I errors.
Moreover, WLS showed an increased level of Type I errors.

For non-normal data, the general pattern remained similar, but
there were also some important differences compared to
normal data.  The parametric techniques—covariance-based
SEM and regression—faced an increase in statistical power.
Although this did not appear to be problematic for effects that
exist in the population model, it had detrimental outcomes for
effects that were essentially zero.  For instance, for the effect
γ23 in the case of 500 observations, the Type I error of all
covariance-based SEM techniques exceeded 10 percent.  In
contrast, PLSc did not face this problem.  Instead, PLSc main-
tained acceptable levels of Type I error under all conditions. 

Nevertheless, this came at a cost:  Among the consistent
techniques, PLSc typically had the lowest statistical power
when it came to detecting effects that exist in the population
model.  However, the size of the difference in power between
techniques differed among paths.  While the difference was
substantial in some instances, it was negligible in others.

An Example from the Information
Systems Domain

We present an example from the IS domain to demonstrate
that choosing one technique over another can alter the conclu-
sions drawn from an empirical analysis.  We reanalyzed the
data that Chin et al. (2003) initially used to demonstrate an
extension to PLS.7  Chin et al.’s paper, which was published
in the journal Information Systems Research, has found ample
dissemination, as is evidenced by its more than 2,700 citations
on Google Scholar as of December 2014.  Figure 5 depicts the
model that we reestimated.  It is a small technology accep-
tance model in which the perceived exogenous constructs of
usefulness and enjoyment are used to explain the intention to
regularly use electronic mail.

We estimated the two path coefficients of this model using
traditional PLS as well as PLSc.  Moreover, we applied boot-
strapping with 10,000 bootstrap samples and determined the
95 percent bootstrap percentile confidence intervals.  Table 5
shows the results that we obtained using the two techniques.
With regard to the two path coefficients, the differences
between the estimates were rather small.  The explanation for
the low degree of differences is obvious:  Because the reli-
abilities estimated by ρA were relatively high (0.8236 for
enjoyment) or even very high (0.9720 for perceived useful-
ness and 0.9473 for intention to use), the correction under-
taken by PLSc was weak.  Unsurprisingly, the two techniques
have led researchers to the same conclusion:  perceived
usefulness and enjoyment have a positive and significant
impact on the intention to regularly use electronic mail.  In the
case of the first effect, one can also see that the correction for
attenuation through PLSc does not necessarily imply
increased estimates but can also lead to decreased estimates.

A small difference between the results of PLS and PLSc
became apparent when we looked at the coefficients of deter-
mination:  the R2 was 0.5162 for PLSc versus 0.4650 for
traditional PLS.  Whereas PLSc could thus explain more than
half of the variation in the dependent variable, the majority of
variance remained unexplained when traditional PLS was
used.

6We cannot completely rule out the possibility that this finding is due to
problems in the software rather than the techniques themselves.  Although
different software provides the same parameter estimates, we could not find
other software implementations providing inference for standardized effects
using ULS, DWLS, or WLS with continuous data. 7We are grateful to Wynne W. Chin for providing us with the data.
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Figure 5.  An Example Model from Information Systems Research (adapted from Chin et al. 2003; main
effects only)

Table 5.  Results of PLS and PLSc for the Example Model

Hypothesis Technique Estimate 95% CI Conclusion

γ1 … 0
PLS 0.5165 [0.3912; 0.6329] supported

PLSc 0.5069 [0.3212; 0.7477] supported

γ2 … 0
PLS 0.2689 [0.1725; 0.3688] supported

PLSc 0.3130 [0.1708; 0.4481] supported

γ1 ! γ2 … 0
PLS 0.2476 [0.0442; 0.4454] supported

PLSc 0.1940 [!0.0750; 0.5480] not supported

In addition to this subtle difference in R2, we observed that,
depending on the method, a researcher might come to sub-
stantially different conclusions.  A legitimate question that
managers, scientists, policymakers, or other interested parties
may ask is, “Does perceived usefulness have a stronger effect
on usage intention than enjoyment?”  This question can be
answered by means of a hypothesis test for the difference
between the two effects.  The output of such a hypothesis test
is presented at the bottom of Table 5.  In this case, it did
matter which technique was used.  Whereas PLSc could not
confirm a significantly stronger influence of perceived
usefulness, traditional PLS could.

In contrast to the simulation study presented earlier, we do not
know the true underlying model for this example.  We only

know that if the common factor model is correct for all three
constructs (which needs to be shown), we can expect the
estimates of PLSc, but not of PLS, to be consistent.

Implications and Guidelines

Selecting the Optimal Method of Analysis

As our study has illustrated, traditional PLS or regression on
sum scores provide inconsistent estimates if the common
factor model holds for all constructs.  This inconsistency of
estimates can lead to unfavorable consequences for hypoth-
esis testing, namely increased Type I and Type II errors. 
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Therefore, for the purpose of hypothesis testing, we recom-
mend that, whenever the common factor model holds, 
researchers should prefer PLSc or covariance-based SEM
over regression on sum scores or traditional PLS.  Con-
versely, if the common factor model is wrong but the
composite model holds, traditional PLS should be the method
of choice (Dijkstra 2013; Henseler et al. 2014).  We anticipate
that structural equation models that contain both composite
and common factor models will become the dominant domain
of PLS path modeling (see also Sarstedt, Ringle, and Hair
2014).  Traditional PLS will provide all construct scores for
these types of structural equation models, and the correction
for attenuation using the new reliability coefficient ρA will be
applied to the reflective constructs.

As a rule of thumb, one could say that to avoid inflated Type
I and Type II errors, one should always choose a statistical
method that can consistently estimate the measurement
models at hand.  Specifically, if the composite model is true,
one should use a method that can address composites, such as
PLS or regression based on sum scores.  If the common factor
model is true, one should use a method that can consistently
estimate these types of models, such as CBSEM or PLSc.  If
a structural equation model contains both composites and
common factors, PLSc (correcting only those constructs that
are reflective) is the method of choice.

Occasionally, covariance-based SEM does not converge and
thus cannot provide any estimates (Reinartz et al. 2009).
Researchers usually solve this problem by changing the model
(respecification) or the data (e.g., by transforming variables or
eliminating influential observations).  Our paper offers
another solution:  the use of PLSc, which can be applied with-
out having to change the model or the data.  Owing to its
favorable convergence behavior, PLSc should be the method
of choice if the same model is to be estimated many times
using different datasets and non-convergence is not a
defendable option.  Typical examples are technology accep-
tance models (e.g., Davis 1989) or national customer
satisfaction indices (e.g., Fornell 1992).

The distribution of data is another aspect to consider.  Al-
though the degree of non-normality induced in our simulation
was rather modest, that is, the data were not skewed and the
kurtosis was in an acceptable range (see Cameron 2003; Kline
2010), the performance of the various covariance-based SEM
techniques dropped substantially. First, the convergence
behavior of GLS and, to a smaller extent, FIML, DWLS, and
ULS, deteriorated.  Second, the operating characteristics of
covariance-based SEM changed substantially, showing an
unacceptably high rate of Type I errors.  In contrast, a non-
normal distribution of data hardly affected PLSc.  The Type
I error of PLSc was not a point of concern, and cases of non-

convergence were unlikely.  Based on our findings, we there-
fore recommend that researchers use PLSc if they are unsure
of whether their data are normally distributed.

If researchers analyze a sample that is generalized to the
population, a method’s statistical power becomes relevant. 
PLSc’s statistical power is comparable to that of GLS, but
slightly lower than that of FIML, meaning that PLSc requires
more observations than FIML to render an effect significant.

There are also situations in which analysts should hesitate to
use PLSc.  The iterative PLS algorithm determines the indi-
cator weights of a proxy relying on the nomological net of the
respective construct.  If there is no nomological net, which
means that a construct is perfectly unrelated to all other
constructs in the model, PLS and, consequently, PLSc will
yield large standard errors and will thus be inefficient.  If
researchers cannot rely on prior research to provide a
sufficiently strong nomological net, they should consider
applying Cohen’s (1982) set correlation.  This tool can be of
high diagnostic value because it can establish confidence in
that blocks of indicators can be expected to correlate.  If a
model is small (for instance, if it involves only two latent
variables), researchers should only employ PLSc if they are
confident that the latent variables are interrelated.  Moreover,
PLSc should not be used to demonstrate that a latent variable
is unrelated to all other latent variables in a model.

Even if the common factor model holds, there may be
instances in which analysts would prefer traditional PLS over
covariance-based SEM or PLSc, such as in purely prediction-
oriented research (Sarstedt, Ringle et al. 2014).  As Becker,
Rai, and Rigdon (2013) put it,

Composite-based methods like partial least squares
(PLS) path modeling have an advantage over factor-
based methods (like CB-SEM) because they yield
determinate predictions, while factor-based
methods’ prediction is constrained in this regard by
factor indeterminacy.  To maximize practical rele-
vance, research findings should extend beyond the
study’s own data.

Finally, if certain misspecifications are present in the model,
limited-information approaches, such as PLSc, have an advan-
tage over full-information approaches.  This occurs 

because if there is a misspecification in one part of
the model and if the model is quite complicated with
many equations, this misspecification will not bias
estimates in other parts of the model as would full-
information estimators (Antonakis et al. 2010, p.
1102). 
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For instance, structural equations estimated using PLSc re-
main unaffected by the measurement model misspecification
of constructs that do not form part of the respective equation
or by the misspecification of other structural equations.

Broadening the Spectrum of Structural
Equation Modeling Techniques

In this paper, we compared essentially eight structural equa-
tion modeling techniques.  These techniques included PLSc
and five full-information covariance-based SEM techniques
as estimators of common factor models on the one hand, and
traditional PLS and regression on sum scores as estimators of
composite models on the other hand.  An array of other struc-
tural equation modeling techniques are available, and
researchers should consider using them if they prove more
appropriate for meeting their research objective.  We thereby
concur with Hair, Ringle, and Sarstedt (2012), who “call for
a more balanced and informed judgment of the available SEM
methods” (p. 314).

In addition to the full-information approaches to covariance-
based SEM, there are also numerous limited-information
approaches to structural equation modeling that use common
factor models for the measurement part.  For instance, in their
regression component analysis, Schönemann and Steiger
(1976) first estimated the factor loadings and then determined
error variances from what was left over.  However, in contrast
to PLSc, regression component analysis requires the appli-
cation of factor model software, whereas PLSc determines the
loadings based on the PLS weight estimates.  Moreover,
Hägglund (1982) introduced an instrumental variable ap-
proach to factor analysis, and Jöreskog (1983) described a
two-stage least squares method.  Hägglund’s and Jöreskog’s
approaches yield consistent estimates.  Two-stage least
squares, as an estimator of structural equation models, has
weaker distributional assumptions and is computationally less
demanding than full-information covariance-based SEM
techniques (Bollen 1996).

There are many variance-based structural equation modeling
techniques to choose from other than regression on sum
scores and PLS.  As an alternative to sum scores, principal
component and common factor analysis offer several options
for creating scores.  If researchers want to calibrate the indica-
tor weights based on the nomological net of the latent vari-
ables, several alternatives are available.  For instance, besides
PLS, there are best fitting proper indices (Dijkstra and
Henseler 2011), generalized structured component analysis
(Henseler 2012; Hwang et al. 2004), regularized generalized
canonical correlation analysis (Tenenhaus and Tenenhaus
2011), and various forms of creating generalized canonical
variables (Kettenring 1971).

Ex Post Modification of Traditional
PLS Results

It has become evident that the estimates of traditional PLS as
well as of other variance-based structural equation modeling
techniques, such as regression on sum scores or generalized
structured component analysis, are not consistent if the
common factor model holds for the construct measurement.
The lack of consistency means that meta-analyses based on
these techniques are not guaranteed to come closer to the true
value than are single studies.  It also means that researchers
may have come to wrong conclusions in more cases than
anticipated, despite having carefully selected adequate alpha
levels and statistical power.8

At least for PLS, the advent of the new reliability coefficient
ρA has created the possibility of calculating consistent
estimates ex post.  To do so, analysts require the inter-
construct correlations, the inter-indicator correlations, and the
indicator weights.  Because inter-indicator correlations and
indicator weights for reflective constructs do not belong to the
common catalogs of reporting standards (Chin 2010; Gefen et
al. 2011; Hair, Sarstedt et al. 2012; Henseler et al. 2009;
Ringle et al. 2012), analysts should follow a two-step ap-
proach.  In a first step, they should verify whether a correction
for attenuation using the reported reliability measure(s) leads
to substantially different empirical findings.  If it does, they
should, in a second step, request the inter-indicator correla-
tions and the indicator weights from the authors to determine
ρA.  Once ρA is available, analysts can apply it to obtain
consistent inter-construct correlations, which they can use to
estimate consistent path coefficients.  That is, the last two
steps of PLSc can be performed.

Conclusions and Future Research

PLS can be viewed from two basic perspectives.  On the one
hand, it can be regarded as an extension of principal com-
ponents and canonical variables, as Herman Wold has main-
tained on various occasions (see any of his works).  This view
has also been maintained in more recent work (Dijkstra and
Henseler 2011; Rigdon 2012).  The alternative view, which
Wold has also held at times, is that PLS is a distribution-free
way to consistently estimate covariance structures or second-
order factor models.  In light of the findings presented in this
paper, this view is less tenable or productive. Of course, the

8An anonymous reviewer noted that the large number of false positives in
PLS and OLS obtained in our simulation study (see Table 4) should not be
used as a simple gauge for the proportion of studies with likely erroneous
conclusions.  The absolute correlations typically observed in IS research are
usually much smaller than those in our simulation study and so will be the
number of false positives.  We thank the reviewer for this note.
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discrepancies between the probability limits of the PLS
estimators, as induced by any of the modes, and the true
parameter values lean toward zero as the quality of the
proxies lean toward one (consistency at large).  However, in
actual applications, the quality is never maximal, and ele-
ments such as path coefficients or construct loadings tend to
be sensitive to deviations from the ideal.  Therefore, if one
wants to use PLS as a consistent and numerically efficient
alternative to any of the well-established methods for estimat-
ing covariance structures, it seems imperative to use PLSc.

PLSc builds on and enhances traditional PLS in several ways. 
First, as with traditional PLS, PLSc uses the iterative PLS
algorithm to obtain construct scores.  Second, unlike tradi-
tional PLS, PLSc employs a correction factor to obtain
consistent construct correlations and consistent indicator
loadings if the common factor model holds true.  Third, both
traditional PLS and PLSc typically apply ordinary least
squares to estimate the relationships between constructs
according to the model specification.  In principle, PLSc is
readily equipped to go beyond the limiting realm of ordinary
least squares and to use two-stage least squares, seemingly
unrelated regression or other appropriate estimators for the
structural model (an approach not entirely new to PLS path
modeling; see Boardman et al. 1981).  This would allow for
analyzing non-recursive models and considering endogeneity
in the structural model.  Future research should try to clarify
the performance of PLSc in combination with alternative
estimators for the structural model.

PLS has traditionally been understood as a technique that is
applicable when dealing with small sample sizes.  The logic
behind this understanding is that, regardless of whether the
data at hand represent a sample or a population, the number
of observations must be sufficiently high so that the method
can technically produce estimates.  In contrast to covariance-
based SEM, PLS can even generate parameter estimates if the
number of model parameters or the number of variables
exceeds the number of observations (Henseler et al. 2014).
None of the four steps of PLSc postulates a larger sample size
for consistent PLS than for traditional PLS.  Nevertheless, the
small sample behavior of PLSc was not within the scope of
the present paper and warrants a thorough investigation,
particularly in light of the ongoing discussion on PLS’ small
sample properties (see Goodhue et al. 2013).

Similar to traditional PLS, PLSc relies on the nomological net
to calibrate the measurement model (Rai et al. 2013).  If a
construct is orthogonal to all other constructs in a structural
equation model, PLS (and thus PLSc) is not likely to
outperform less sophisticated techniques, such as regressions,
based on sum scores or principal components.  One way to
ensure the proper functioning of PLS is to include other con-
structs in the model (Henseler et al. 2014).  Future research

should systematically explore the extent to which the effi-
ciency of PLSc depends on the strength of the nomological
net, and it should try to formulate minimum requirements for
the nomological net.  Moreover, such research should spell
out recommendations regarding when to use PLSc or
alternative SEM techniques.

A remaining weakness of PLSc is its somewhat lower power
compared to covariance-based SEM.  If deemed necessary,
Bentler and Dijkstra’s (1986) suggested approach can be used
to overcome the somewhat lower statistical power of PLSc.
Updating a consistent estimator once using the Newton-
Raphson or Gauss-Newton methods for the first-order
conditions of a suitably fitting function will result in an
asymptotically efficient estimator.  Therefore, PLS can be
made as efficient as ML-estimators by introducing a simple
adjustment to it followed by an iteration of a standard
optimization routine (Bentler and Hwang 2014).  However, it
should be noted that the efficient approach leans heavily on
the assumption that the model is correct.  One may wish to
stick to PLSc due to its potential robustness in the case of a
(suspected) misspecification.

Traditional PLS already has a broad scope and range of
applications as a multiple indicator approach to modeling
conceptual variables that uses composites rather than common
factors as proxies.  PLSc broadens this scope by making the
PLS family of methods the primary choice for structural
equation models containing both common factors and
composites.  In principle, PLSc is not limited to common
factors or composites as measurement models.  There are
more sophisticated measurement models that go beyond the
simple factor/component dichotomy (Rigdon 2014).  The
management literature contains examples such as differences
(e.g., Gundlach et al. 1995) and interactions (e.g., Gibson and
Birkinshaw 2004) between indicators.  Modeling more
sophisticated measurement models by means of PLSc is well
within reach.

The advent of PLSc has substantial consequences for method-
ological research in MIS.  Not only does MIS research make
ample use of PLS as a method of analysis, but also many
extensions and advances of PLS can be credited to MIS
researchers.  Major examples are PLS-related reporting
standards (Gefen et al. 2011) and PLS-based approaches to
multigroup analysis (Chin and Dibbern 2010; Keil et al. 2000;
Qureshi and Compeau 2009), testing moderating effects (Chin
et al. 2003; Goodhue et al. 2007; Henseler and Chin 2010),
detecting unobserved heterogeneity (Becker, Rai et al. 2013),
assessing common method bias (Chin et al. 2012; Liang et al.
2007), testing for measurement invariance (Hsieh et al. 2008),
modeling nonlinear relationships (Henseler et al. 2012), and
analyzing hierarchical component models (Ringle et al. 2012;
Wetzels et al. 2009).  These examples have all been devel-
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oped, discussed, or improved within the MIS domain. All of
these extensions and advances must be examined with respect
to their applicability to PLSc.  Several of them most likely
need to be adapted to fully exploit the benefits of consistent
PLSc.
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Appendix A

In variance-based SEM, the path coefficients can be determined based on the construct score correlation matrix R, which for the model depicted
in Figure 1 is of the following form (“cor” = correlation; “rel” = reliability):

From R, we can extract the submatrix R X =
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Under the assumption that the construct scores are standardized, the regression equation equals
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Since the true β1 equals zero, we can exploit that cor(ξ1, η) = cor(ξ1, ξ2) @ cor(ξ2, η) and thus find the following result for the path β̂1 coefficient 

as estimated by variance-based SEM:
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Appendix B1

A starting point for PLS-analyses is the so-called basic design, in essence a factor model.  It is assumed that we have N i.i.d.2 column vectors
of observed scores y1, y2, y3, …, yN (i.e., we have N observations).  We assume the usual standardization in PLS of each indicator, which means
that each vector yn for n = 1, 2, 3, ..., N has zero mean and its elements have unit variance.  The vectors can be partitioned into M subvectors,
M $ 2, each with at least two components.  For the ith subvector yin of yn, we have

(1)yin i in in= ⋅ +λ η ε

where the loading vector λi and the vector of measurement errors εin have the same dimensions as yin, and the unobservable latent variable ηin

is real-valued.3  For convenience, we make the sufficient but by no means necessary assumption that all components of all error vectors are
mutually independent, and independent of all latent variables.

The latent variables have also zero mean and unit variance.  The correlation between ηin and ηjn will be denoted by ρij. A particular set of easy
implications is that the covariance matrix Σii of yin can be written as

(2):= = Ey yij jn
T

ij ij i j
Tρ λ λ

where the covariance matrix of the measurement errors Θi is diagonal with non-negative diagonal elements, and we have for the covariance
between yin and yjn

1To keep the paper self-contained, we collect here the main algebraic results underlying PLSc (for a more elaborate explication, see Dijkstra 2010).  Note that
there are many ways to correct for inconsistency and the one we use here is quite possibly the simplest one.  See Dijkstra (2013) for alternatives and extensions. 
Any combination of PLS with one of the alternatives could legitimately be called PLSc.

2The use of i.i.d. (independent and identically distributed) signifies that the data are seen as a random sample from a population.  This is for conceptual
convenience only.  Together with the classical laws of large numbers and the central limit theorem (Cramér 1946), this entails the consistency and asymptotic
normality properties we need.  We can make much more general assumptions, but the statististical subtleties would be a distraction and would not lead to different
results (CAN-estimators).

3We follow exactly the specification of Joreskög (1969).  Please note that variables are arranged per rows, and observations per columns.  Moreover, note that,
as opposed to our custom in the main body of the paper, it pays here to use a subscript for the blocks.
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(3):= = Ey yin jn
T

ij i j
T

ij
ρ λ λ

The covariance matrix of each yn will be denoted by Σ, and the sample covariance matrix by S.  The sample counterparts of Σii and Σij are

denoted by Sii and Sij, respectively.  Since we assume that the sample data are standardized before being analyzed, we have .S y yij N in jn
T

n

N=
=1

1

Note that the assumptions made so far entail that the sample counterparts are consistent and jointly asymptotically normal estimators of the
theoretical variance and covariance matrices (Cramér 1946, Chapter 28).

PLS features a number of iterative fixed-point algorithms, of which we select one, the so-called Mode A algorithm.  This is, in general,
numerically the most stable algorithm.4  As a rule, it converges from arbitrary starting vectors, and it is usually very fast.  The outcome is an
estimated weight vector ŵ, with typical subvector ŵi of the same dimensions as yin.  With these weights, sample proxies are defined for the latent

variables:  for ηin, with the customary normalization of a unit sampling variance, so .  In  : ηin i
T

inw y= ( )1
2

1
1N i

T
in i

T
ii in

N
w y w S w  = =

=
 Wold’s PLS approach the η̂in’s replace the unobserved latent variables, and loadings and structural parameters are estimated using ordinary
least squares.5  For Mode A, we have for each i (% stands for “proportional to”)

(4)
( )

 w sign S wi ij ij j
j C i

∝ ⋅
∈


Here, signij is the sign of the sample correlation between η̂i  and η̂j, and C (i) is a set of indices of latent variables.  Traditionally, C (i) contains
the indices of latent variables adjacent to η̂i (i.e., the indices of latent variables that appear on the other side of the structural or path equations

in which η̂i appears).  Clearly, ŵi  is obtained by a regression of the indicators yin on the sign-weighted sum:  .  There are( ) signij jny C i
⋅

∈ η
other versions (with correlation weights, for example); this is one of the very simplest, and it is the original one (see Wold, 1982). There is little
motivation in the PLS literature for the coefficients of Sijŵj,

6 but the particular choice can be shown to be irrelevant for the probability limits
of the estimators.  The algorithm takes an arbitrary starting vector, and then basically follows the sequence of regressions for each i, each time
inserting updates when available (or after each full round; the precise implementation is not important).

Dijkstra (1981, 2010) has shown that the PLS modes converge with a probability tending to one when the sample size tends to infinity, for
essentially arbitrary starting vectors.  Moreover, the weight vectors that satisfy the fixed-point equations, are locally continuously differentiable
functions of the sample covariance matrix of y.They, as well as other estimators that depend smoothly on the weight vectors and S, are therefore
jointly asymptotically normal.

Let us denote the probability limit of ŵi, plim ŵi, by . We can get it from the equation for ŵi by substitution of Σ for S.wi

(5)
( ) ( ) ( )

w sign w sign w sign wi ij jij
j C i

ij ij i i
T

j
j C i

i ij ij j
T

j
j C i

∝ ⋅ = ⋅ = ⋅  
∈ ∈ ∈

ρ λ λ λ ρ λ

Since  is a scalar, and all terms in the sum have the vector λi in common, it is clear that .  We must have , soλi
T

jw wi i∝ λ w wi
T

iii
= 1

(6)wi
i

i
T

iii

=

λ

λ λ

4This is because Mode A ignores collinearity between the observed variable predictors of the proxy, while Mode B takes account of that colllinearity and thus
must find the inverse of the covariance matrix of the predictions, which itself is sometimes unstable.

5Other estimators like 2SLS are also possible.

6In favor of the sign-weights, one could argue that in sufficiently large samples signij @ Sijŵj is approximately equal to , where the term in( )λ ρ λi ij j
T

jw⋅ ⋅
brackets measures the (positive) correlation between ηj and its proxy; see below for results that help justify this claim.  So the tighter the connection between ηj,
and the better ηj can be measured, the more important η̂j is in determining ŵi
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We conclude that PLS, Mode A, produces estimated weight vectors that tend to vectors proportional to the true loadings.  One would like to

have a simple estimate for the proportionality factor.  We propose here as in Dijkstra (1981, 2010, 2011) to define , where the scalar  :  λi i ic w= ⋅ ci
is such that the off-diagonal elements of Sii are reproduced as well as possible in a least squares sense.  So we minimize the Euclidean distance
between7

 and (7)( )[ ]S diag Sii ii− ( )( ) ( )( )( )[ ]c w c w diag c w c wi i i i

T

i i i i

T⋅ ⋅ − ⋅ ⋅   

as a function of ci and obtain

(8)
( )( )
( )( ) :

 

     
c

w S diag S w

w w w diag w w w
i

i
T

ii ii i

i
T

i i
T

i i
T

i

=
−

−















1
2

The use of “diag” means that only the off-diagonal elements of the matrices are taken into account.  So the numerator within brackets is just   ,w w Siaa b ib ii ab≠
and similarly for the denominator.  In sufficiently large samples, ĉi will be well-defined, real, and positive.  (In all samples in this paper and
those in other studies, ĉi attained proper values.)  Its calculation does not require additional numerical optimization.  It is straightforward to
verify, by replacing Sii by Σii and ŵi by w̄i, that the correction does its job:  the matrix in the denominator equals the matrix in the numerator,

apart from a factor , so1
λ λi

T
iii

(9)c ci i i
T

iii
: = = plim λ λ

Now, in particular

(10)( )plim plim  λ λi i i i i ic w c w= ⋅ = ⋅ =

It will be useful to define a population proxy η̄in by η̄in := w̄T
i yin. Clearly, the squared correlation between a population proxy and its

corresponding latent variable is

(11)( ) ( )R wi i i
T

i
2 2

η η λ, =

which equals

(12)( ) ( )
( )

λ λ λ λ
λ λ

λ λ λ λ
i
T

i i ii i

i
T

i

i
T

i i
T

i i

2

2

2÷ =
+

Σ
Θ

With a large number of high quality indicators, this correlation can be close to one (:”consistency at large” in PLS parlance).  A trivially
deduced but important algebraic relationship is

(13)( ) ( ) ( ) ( )R w w R Ri j i
T

ij j ij i i j j
2 2 2 2 2η η ρ η η η η, , ,= = ⋅ ⋅Σ

indicating that the PLS proxies will tend to underestimate the squared correlations between the latent variables.  In fact, one can show that this
is true for multiple correlations as well (see Dijkstra 2010).  Also note that

(14)( ) ( ) ( )( ) ( )R w w w c w w ci j i
T

i i
T

i i i
T

i i
2 2 2 2 2η η λ, = = ⋅ ⋅ = ⋅

so that we can estimate the (squared) quality of the proxies consistently by

7This assumes that the measurement errors within a block are uncorrelated, the basic design.  If we know that some errors are correlated or we have doubts about
them, we can delete the items from the difference to be minimized.
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(15)( ) ( ) , :   R w w ci i i
T

i i
2 2 2η η = ⋅

Moreover, with

(16)( ) ( ) , :   R w S w ci j i
T

ij j i
2 2 2η η = ⋅

we can estimate the correlations between the latent variables consistently (see Equation 13)

(17)
( )

( ) ( )
 :

 ,

 ,  ,
ρ

η η

η η η ηij

i j

i i j j

R

R R
=

⋅

2

2 2

We close this appendix with four observations:

1.  Standard PLS software for Mode A will produce all the necessary, simple ingredients for consistent estimation.

2. The approach can be and has been extended to Mode B (Dijkstra 1981, 2010, 2011), but since Mode A is numerically more stable and
faster than Mode B, it has first priority.

3. In the main body of this paper, we used ρ(ηi) for R(ηi, η̄i).

4. In the main body of this paper, we used (without subscript i)

(18)( ) ( )( )
( )( )ρA i i

T
i

i
T

ii ii i

i
T

i i
T

i i
T

i

w w
w S diag S w

w w w diag w w w
, :  

 

  ,   ,  
= ⋅

−

−
2

This is just .( ) ,R i i
2 η η
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