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Appendix A

In variance-based SEM, the path coefficients can be determined based on the construct score correlation matrix R, which for the model depicted
in Figure 1 is of the following form (“cor” = correlation; “rel” = reliability):

From R, we can extract the submatrix RX =










1

1
12

12

r

r

 and the subvector . RXy =

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


r

r
13

23

Under the assumption that the construct scores are standardized, the regression equation equals
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Since the true β1 equals zero, we can exploit that cor(ξ1, η) = cor(ξ1, ξ2) @ cor(ξ2, η) and thus find the following result for the path β̂1 coefficient 

as estimated by variance-based SEM:
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Appendix B1

A starting point for PLS-analyses is the so-called basic design, in essence a factor model.  It is assumed that we have N i.i.d.2 column vectors
of observed scores y1, y2, y3, …, yN (i.e., we have N observations).  We assume the usual standardization in PLS of each indicator, which means
that each vector yn for n = 1, 2, 3, ..., N has zero mean and its elements have unit variance.  The vectors can be partitioned into M subvectors,
M $ 2, each with at least two components.  For the ith subvector yin of yn, we have

(1)yin i in in= ⋅ +λ η ε

where the loading vector λi and the vector of measurement errors εin have the same dimensions as yin, and the unobservable latent variable ηin

is real-valued.3  For convenience, we make the sufficient but by no means necessary assumption that all components of all error vectors are
mutually independent, and independent of all latent variables.

The latent variables have also zero mean and unit variance.  The correlation between ηin and ηjn will be denoted by ρij. A particular set of easy
implications is that the covariance matrix Σii of yin can be written as

(2):= = Ey yij jn
T

ij ij i j
Tρ λ λ

where the covariance matrix of the measurement errors Θi is diagonal with non-negative diagonal elements, and we have for the covariance
between yin and yjn

1To keep the paper self-contained, we collect here the main algebraic results underlying PLSc (for a more elaborate explication, see Dijkstra 2010).  Note that
there are many ways to correct for inconsistency and the one we use here is quite possibly the simplest one.  See Dijkstra (2013) for alternatives and extensions. 
Any combination of PLS with one of the alternatives could legitimately be called PLSc.

2The use of i.i.d. (independent and identically distributed) signifies that the data are seen as a random sample from a population.  This is for conceptual
convenience only.  Together with the classical laws of large numbers and the central limit theorem (Cramér 1946), this entails the consistency and asymptotic
normality properties we need.  We can make much more general assumptions, but the statististical subtleties would be a distraction and would not lead to different
results (CAN-estimators).

3We follow exactly the specification of Joreskög (1969).  Please note that variables are arranged per rows, and observations per columns.  Moreover, note that,
as opposed to our custom in the main body of the paper, it pays here to use a subscript for the blocks.
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(3):= = Ey yin jn
T

ij i j
T

ij
ρ λ λ

The covariance matrix of each yn will be denoted by Σ, and the sample covariance matrix by S.  The sample counterparts of Σii and Σij are

denoted by Sii and Sij, respectively.  Since we assume that the sample data are standardized before being analyzed, we have .S y yij N in jn
T

n

N=
=1

1

Note that the assumptions made so far entail that the sample counterparts are consistent and jointly asymptotically normal estimators of the
theoretical variance and covariance matrices (Cramér 1946, Chapter 28).

PLS features a number of iterative fixed-point algorithms, of which we select one, the so-called Mode A algorithm.  This is, in general,
numerically the most stable algorithm.4  As a rule, it converges from arbitrary starting vectors, and it is usually very fast.  The outcome is an
estimated weight vector ŵ, with typical subvector ŵi of the same dimensions as yin.  With these weights, sample proxies are defined for the latent

variables:  for ηin, with the customary normalization of a unit sampling variance, so .  In  : ηin i
T

inw y= ( )1
2

1
1N i

T
in i

T
ii in

N
w y w S w  = =

=
 Wold’s PLS approach the η̂in’s replace the unobserved latent variables, and loadings and structural parameters are estimated using ordinary
least squares.5  For Mode A, we have for each i (% stands for “proportional to”)

(4)
( )

 w sign S wi ij ij j
j C i

∝ ⋅
∈


Here, signij is the sign of the sample correlation between η̂i  and η̂j, and C (i) is a set of indices of latent variables.  Traditionally, C (i) contains
the indices of latent variables adjacent to η̂i (i.e., the indices of latent variables that appear on the other side of the structural or path equations

in which η̂i appears).  Clearly, ŵi  is obtained by a regression of the indicators yin on the sign-weighted sum:  .  There are( ) signij jny C i
⋅

∈ η
other versions (with correlation weights, for example); this is one of the very simplest, and it is the original one (see Wold, 1982). There is little
motivation in the PLS literature for the coefficients of Sijŵj,

6 but the particular choice can be shown to be irrelevant for the probability limits
of the estimators.  The algorithm takes an arbitrary starting vector, and then basically follows the sequence of regressions for each i, each time
inserting updates when available (or after each full round; the precise implementation is not important).

Dijkstra (1981, 2010) has shown that the PLS modes converge with a probability tending to one when the sample size tends to infinity, for
essentially arbitrary starting vectors.  Moreover, the weight vectors that satisfy the fixed-point equations, are locally continuously differentiable
functions of the sample covariance matrix of y.They, as well as other estimators that depend smoothly on the weight vectors and S, are therefore
jointly asymptotically normal.

Let us denote the probability limit of ŵi, plim ŵi, by . We can get it from the equation for ŵi by substitution of Σ for S.wi

(5)
( ) ( ) ( )

w sign w sign w sign wi ij jij
j C i

ij ij i i
T

j
j C i

i ij ij j
T

j
j C i

∝ ⋅ = ⋅ = ⋅  
∈ ∈ ∈

ρ λ λ λ ρ λ

Since  is a scalar, and all terms in the sum have the vector λi in common, it is clear that .  We must have , soλi
T

jw wi i∝ λ w wi
T

iii
= 1

(6)wi
i

i
T

iii

=

λ

λ λ

4This is because Mode A ignores collinearity between the observed variable predictors of the proxy, while Mode B takes account of that colllinearity and thus
must find the inverse of the covariance matrix of the predictions, which itself is sometimes unstable.

5Other estimators like 2SLS are also possible.

6In favor of the sign-weights, one could argue that in sufficiently large samples signij @ Sijŵj is approximately equal to , where the term in( )λ ρ λi ij j
T

jw⋅ ⋅
brackets measures the (positive) correlation between ηj and its proxy; see below for results that help justify this claim.  So the tighter the connection between ηj,
and the better ηj can be measured, the more important η̂j is in determining ŵi
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We conclude that PLS, Mode A, produces estimated weight vectors that tend to vectors proportional to the true loadings.  One would like to

have a simple estimate for the proportionality factor.  We propose here as in Dijkstra (1981, 2010, 2011) to define , where the scalar  :  λi i ic w= ⋅ ci
is such that the off-diagonal elements of Sii are reproduced as well as possible in a least squares sense.  So we minimize the Euclidean distance
between7

 and (7)( )[ ]S diag Sii ii− ( )( ) ( )( )( )[ ]c w c w diag c w c wi i i i

T

i i i i

T⋅ ⋅ − ⋅ ⋅   

as a function of ci and obtain

(8)
( )( )
( )( ) :

 

     
c

w S diag S w

w w w diag w w w
i

i
T

ii ii i

i
T

i i
T

i i
T

i

=
−

−















1
2

The use of “diag” means that only the off-diagonal elements of the matrices are taken into account.  So the numerator within brackets is just   ,w w Siaa b ib ii ab≠
and similarly for the denominator.  In sufficiently large samples, ĉi will be well-defined, real, and positive.  (In all samples in this paper and
those in other studies, ĉi attained proper values.)  Its calculation does not require additional numerical optimization.  It is straightforward to
verify, by replacing Sii by Σii and ŵi by w̄i, that the correction does its job:  the matrix in the denominator equals the matrix in the numerator,

apart from a factor , so1
λ λi

T
iii

(9)c ci i i
T

iii
: = = plim λ λ

Now, in particular

(10)( )plim plim  λ λi i i i i ic w c w= ⋅ = ⋅ =

It will be useful to define a population proxy η̄in by η̄in := w̄T
i yin. Clearly, the squared correlation between a population proxy and its

corresponding latent variable is

(11)( ) ( )R wi i i
T

i
2 2

η η λ, =

which equals

(12)( ) ( )
( )

λ λ λ λ
λ λ

λ λ λ λ
i
T

i i ii i

i
T

i

i
T

i i
T

i i

2

2

2÷ =
+

Σ
Θ

With a large number of high quality indicators, this correlation can be close to one (:”consistency at large” in PLS parlance).  A trivially
deduced but important algebraic relationship is

(13)( ) ( ) ( ) ( )R w w R Ri j i
T

ij j ij i i j j
2 2 2 2 2η η ρ η η η η, , ,= = ⋅ ⋅Σ

indicating that the PLS proxies will tend to underestimate the squared correlations between the latent variables.  In fact, one can show that this
is true for multiple correlations as well (see Dijkstra 2010).  Also note that

(14)( ) ( ) ( )( ) ( )R w w w c w w ci j i
T

i i
T

i i i
T

i i
2 2 2 2 2η η λ, = = ⋅ ⋅ = ⋅

so that we can estimate the (squared) quality of the proxies consistently by

7This assumes that the measurement errors within a block are uncorrelated, the basic design.  If we know that some errors are correlated or we have doubts about
them, we can delete the items from the difference to be minimized.
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(15)( ) ( ) , :   R w w ci i i
T

i i
2 2 2η η = ⋅

Moreover, with

(16)( ) ( ) , :   R w S w ci j i
T

ij j i
2 2 2η η = ⋅

we can estimate the correlations between the latent variables consistently (see Equation 13)

(17)
( )

( ) ( )
 :

 ,

 ,  ,
ρ

η η

η η η ηij

i j

i i j j

R

R R
=

⋅

2

2 2

We close this appendix with four observations:

1.  Standard PLS software for Mode A will produce all the necessary, simple ingredients for consistent estimation.

2. The approach can be and has been extended to Mode B (Dijkstra 1981, 2010, 2011), but since Mode A is numerically more stable and
faster than Mode B, it has first priority.

3. In the main body of this paper, we used ρ(ηi) for R(ηi, η̄i).

4. In the main body of this paper, we used (without subscript i)

(18)( ) ( )( )
( )( )ρA i i

T
i

i
T

ii ii i

i
T

i i
T

i i
T

i

w w
w S diag S w

w w w diag w w w
, :  

 

  ,   ,  
= ⋅

−

−
2

This is just .( ) ,R i i
2 η η
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