
BIG DATA & ANALYTICS IN NETWORKED BUSINESS

LARGE-SCALE NETWORK ANALYSIS FOR ONLINE
SOCIAL BRAND ADVERTISING

Kunpeng Zhang
Department of DOIT, Robert H. Smith School of Business, University of Maryland,

College Park, MD 27042 U.S.A. {kzhang@rhsmith.umd.edu}

Siddhartha Bhattacharyya
Department of IDS, College of Business Administration, University of Illinois, Chicago,

Chicago, IL 60607 U.S.A. {sidb@uic.edu}

Sudha Ram
Department of MIS, Eller College of Management, University of Arizona,

Tucson, AZ 85721 U.S.A. {ram@eller.arizona.edu}

Appendix A
Network Generation

Algorithm 1: Chaining Two MapReduce Jobs to the Brand–Brand Network

Input: A text file contains lines of <brandid, userid, # of activities>
Output: A text file contains lines of <brandi, brandj, # of common users>

1: /* The first job */
2: input: <brandid, userid> // Each line in the text file

3: function MAPPER
4: output < userid, brandid>
5: end function

6: function REDUCER
7: for all v 0 values do
8: add v ÷ list
9: end for
10: for all <b, bj>, bi, bj 0 list do
11: add v ÷ list
12: end for
13: output <k2, v2>
14: end function

15: /* The second job */

MIS Quarterly Vol. 40 No. 4—Appendices/December 2016 A1

Zhang et al./Large-Scale Network Analysis for Online Social Brand Advertising

16: function IDENTITY MAPPER
17: end function
18: function REDUCER
19: for all v 0 values do
20: sum += v
21: end for
22: output <key, sum>
23: end function

Appendix B

Hierarchical Community Detection

Algorithm 2: Hierarchical Community Detection

1: C* ² {i}
2: function DIVIDE(Bn, s) // s is the threshold and Bn is the network
3: C: {C1, C2, …, Ck} ² Modularity-Based Detection (Bn)
4: for all Ci 0 C do // this can be processed in parallel
5: if | Ci |$ s then
6: C ² DIVIDE(Ci, s)
7: else
8: C* ² C* ^ Ci
9: end if
10: end for
11: return C*

A2 MIS Quarterly Vol. 40 No. 4—Appendices/December 2016

Zhang et al./Large-Scale Network Analysis for Online Social Brand Advertising

Appendix C

Brand Ranking

Algorithm 3: Distributed bRank: Mapper and Reducer Functions to Rank Brands

1: /* The job for Mapper is to invert the input */

2: function MAPPER
3: for all brandj 0 (brand1, brand2, …, brandk) do

4: output brandj ² <brandi, ranki > //wi is weights of all out-links from i∗


w
w
ij

i

5: end for
6: output brandi ÷ brand1, brand2, …, brandk
7: end function

8: /* The job for Reducer is to update the ranking using the in-links */

9: function REDUCER
10: Input is in a format of (*). The key: brandk
11: for all in-link brandi 0 (brand1, brand2, …, brandn) do

12: // is weights of all out-links from irank rankk k
w

w
ij

i
+ = ∗ β

13: end for
14: () ()rank rank C kk k n= − + ∗1 β
15: output <brandk, rankk> ÷ <brand1, brand2, …, brandn>

// brand1, brand2, …, brandn are out-links of brandk
16: end function

After map function, we have temporary files in the following structure (*):
brandk ÷ <brand1, rank1>,

<brand2, rank2>,
…,
<brandn, rankn2>,
<brandk1, brandk2, …, brandkn>

 Where brand1, brand2, …, brandn are in-links of brandn and brandk1, brandk2, …, brandkn are out-links.

MIS Quarterly Vol. 40 No. 4—Appendices/December 2016 A3

