
SPECIAL ISSUE:  IT AND INNOVATION

PLATFORM ECOSYSTEMS:  HOW
DEVELOPERS INVERT THE FIRM

Geoffrey Parker
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive,

Hanover, NH  03755  U.S.A.  {geoffrey.g.parker@dartmouth.edu}

Marshall Van Alstyne
Questrom School of Business, Boston University, 595 Commonwealth Avenue,

Boston, MA  02215  U.S.A.  {mva@bu.edu}

Xiaoyue Jiang
School of Business & Engineering, Quinnipiac University, 275 Mount Carmel Avenue,

Hamden, CT  06518  U.S.A.  {xiaoyue.jiang@quinnipiac.edu}

Appendix
Proof of Proposition 1

Recall from the model setup Eq. (5) that
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The corresponding first-order conditions w.r.t. δ and σ become
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Table A1.  Parameter Definitions

Var Parameter Definition

σ Share of platform (%) opened to developers

t, δ Time until exclusionary period expires (discount δ = e-rt)

α Technology in Cobb Douglas production

K Coefficient of reuse

Md, Mu Market spillovers from developers and users, index sizes of network effects

Nd, Nu Number of developers and users respectively

p Price of individual developer applications p = v(1 – δ)
ρ Technological uncertainty; equal to 1 – ω

v Value, per unit, of developer output

V Standalone value of sponsor’s platform

yi Output of a single developer in period i and input to developers in period i + 1 with y0 = σV and yi+1 = kyi
α

+1

ω Probability of success for a given innovation; equal to 1 – ρ

Multiply Eq. (10) by σ to get
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Denote

(13)S V:= σ
Then Eq. (12) becomes
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Similarly, Eq. (11) becomes
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Equivalently,
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Denote

(16)M kS:= −α 1

Then
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Then Eqs. (14) and (15) reduce to
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Substituting (19) into (18), we obtain
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Eq. (20) serves as the basis for our analysis of δ and σ.

First, about δ as claimed in (i).  Denote

(21)X N Mr:=

and view the right-hand side of (20) as a function of X and Nr, f(X, Nr), that is,
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Recall 0 < α < 1, which implies 1 – α > 0 and 1 –  > 0.  Therefore, all the terms in the expression of f(X; Nr) are both positive and
α
2

monotonically nondecreasing.  We have the following properties of f(X; Nr):

(1) f(0; Nr) = 0; f(4; Nr) = 4 for all v, Nr > 0.
(2) f(X; Nr) increases strictly in X and decreases strictly in Nr.

Consequently, there exists a unique X(Nr) > 0 such that  f(X (Nr); Nr) = 1.  Clearly X(Nr) monotonically increases in Nr due to the monotonicity
of f(X(Nr); Nr) w.r.t. X and Nr.  By further expressing δ in terms of X via (19) and (21), δ = [1 – X-α]/2, we see δ increases in X, thus in Nr. 
Moreover, the natural bound for interior δ > 0 requires X > 1, which is equivalent to f(1; Nr) < 1 due to the monotonicity of f in X.  By straight-
forward rearrangement, f(1; Nr) < 1 becomes Condition R = (αv)/2/Nr < 1.  This completes the proof of Part (i).

Now, consider σ.  The uniqueness of X > 1 satisfying f(X; Nr) = 1 implies the uniqueness of σ.  Indeed, by definitions of X, M, and S, we have
X = NrM = NrkSα-1 = Nrk(σV)α-1.  Under condition Nr, K > 0 and X > 0 according to the argument above, we have
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Therefore, it is never optimal for the platform to be completely closed, σ = 0 as long as v, Nr, k > 0.  We now demonstrate the monotonicity
property of σ with respect to Nr, or equivalently to δ, to complete the proof of Part (ii).

Noticing (23) can be rewritten as

(24)( )σ α= >−k
M V

1
2 0

We now convert f(X; Nr) into a function of M and Nr.  To be more precise, for

(25)( )Q Nr:= α

define the function
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(26)( ) ( ) ( ) ( )[ ]g M Q f X N M M Q QMr
v; : ; /= = + − +−α α αα α4

1 1
2

1
21

Parallel to previous arguments, we have g(0; Q) = 0, g(4; Q) = 4; thus, for all Q > 0, there exists a unique M(Q) > 0 such that g(M(Q); Q) = 1. 
The monotonicity property of  M(Q) w.r.t.  Q is thus implied in the monotonicity of g(M; Q) w.r.t.  both M and Q.

As for the monotonicity of g, it is clear g(M; Q) increases strictly in M.  With respect to Q, consider the first-order partial derivative 
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Clearly,
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Combining equations f(X; Nr) = 1 and δ = [1 – X-α]/2,  uniquely determines an .δ Nd

The monotonicity of δ w.r.t. Nr in Part (i) further yields
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monotonicity of w.r.t. in Part  i

σ
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In parallel, on  or , σ 9 δ, Nr.  Consequently, σ achieves its maximum at .  This completes the proof{ }N Nr d≥ { }δ δ≥ δ δ≥ =, N Nr d

of Part (iii).

By combining Eqs. (19), (21), and (23) under condition R < 1, we can further express σ as a function of δ.
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Clearly, σ < 1 is guaranteed by (Nr k)1/(1–α)/V < 1, or equivalently, Nr k/V1–α = U < 1.  This confirms Part (ii) of the proposition.  Finally, it is easy
to see Nr monotonically increaess in Nd and ω = 1 – ρ, and the proof is complete.
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