Platform Ecosystems: How Developers Invert the Firm

Geoffrey Parker

Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 U.S.A. \{geoffrey.g.parker@dartmouth.edu\}

Marshall Van Alstyne
Questrom School of Business, Boston University, 595 Commonwealth Avenue, Boston, MA 02215 U.S.A. \{mva@bu.edu\}

Xiaoyue Jiang
School of Business \& Engineering, Quinnipiac University, 275 Mount Carmel Avenue,
Hamden, CT 06518 U.S.A. \{xiaoyue.jiang@quinnipiac.edu\}

Appendix

Proof of Proposition 1

Recall from the model setup Eq. (5) that

$$
\begin{equation*}
\pi_{p}=V(1-\sigma)+\frac{1}{2} v(1-\delta) k(\sigma V)^{\alpha}+\delta \frac{1}{2} v(1-\delta) k^{1+\alpha}(\sigma V)^{\alpha^{2}} \tag{9}
\end{equation*}
$$

The corresponding first-order conditions w.r.t. δ and σ become

$$
\begin{align*}
& 0=\frac{\partial \pi_{p}}{\partial \sigma}=-V+\frac{1}{2} v(1-\delta)\left[k \alpha \sigma^{\alpha-1} V^{\alpha}+\delta \alpha^{2} k^{1+\alpha}\left(N_{r}\right)^{\alpha} \sigma^{\alpha^{2}-1} V^{\alpha^{2}}\right] \tag{10}\\
& 0=\frac{\partial \pi_{p}}{\partial \delta}=-\frac{1}{2} v k(\sigma V)^{\alpha}+\frac{1}{2} v(1-\delta) k^{1+\alpha}\left(N_{r}\right)^{\alpha}(\sigma V)^{\alpha^{2}}-\delta \frac{1}{2} v k^{1+\alpha}\left(N_{r}\right)^{\alpha}(\sigma V)^{\alpha^{2}} \tag{11}
\end{align*}
$$

Table A1. Parameter Definitions

Var	Parameter Definition
σ	Share of platform (\%) opened to developers
t, δ	Time until exclusionary period expires (discount $\left.\delta=e^{-r}\right)$
α	Technology in Cobb Douglas production
K	Coefficient of reuse
$M_{d} M_{u}$	Market spillovers from developers and users, index sizes of network effects
$N_{d} N_{u}$	Number of developers and users respectively
p	Price of individual developer applications $p=v(1-\delta)$
ρ	Technological uncertainty; equal to $1-\omega$
v	Value, per unit, of developer output
V	Standalone value of sponsor's platform
y_{i}	Output of a single developer in period i and input to developers in period $i+1$ with $y_{0}=\sigma V$ and $y_{i+1}=k y_{i+1}^{\alpha}$
ω	Probability of success for a given innovation; equal to $1-\rho$

Multiply Eq. (10) by σ to get

$$
\begin{equation*}
0=-\sigma V+\frac{1}{2} k \alpha v(1-\delta)\left[(\sigma V)^{\alpha}+\delta \alpha k^{\alpha}\left(N_{r}\right)^{\alpha}(\sigma V)^{a^{2}}\right] \tag{12}
\end{equation*}
$$

Denote

$$
\begin{equation*}
S:=\sigma V \tag{13}
\end{equation*}
$$

Then Eq. (12) becomes

$$
S=\frac{1}{2} k o v(1-\delta)\left[S^{\alpha}+\delta o k^{\alpha}\left(N_{r}\right)^{\alpha} S^{\alpha^{2}}\right]
$$

or

$$
\begin{equation*}
1=\left(\alpha d k S^{\alpha-1}\right) \frac{v}{2}(1-\delta)\left[1+\delta \alpha\left(k N_{r} S^{\alpha-1}\right)^{a}\right] \tag{14}
\end{equation*}
$$

Similarly, Eq. (11) becomes

$$
0=\frac{1}{2} v k S^{\alpha}+\frac{1}{2} v(1-\delta) k^{1+\alpha}\left(N_{r}\right)^{\alpha} S^{\alpha^{2}}-\delta \frac{1}{2} v k^{1+\alpha}\left(N_{r}\right)^{\alpha} S^{\alpha^{2}}
$$

Equivalently,

$$
\begin{equation*}
\delta=\frac{1}{2}\left[1-\left(N_{r} k S^{\alpha-1}\right)^{-\alpha}\right] \tag{15}
\end{equation*}
$$

Denote

$$
\begin{equation*}
M:=k S^{\alpha-1} \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\boldsymbol{\delta}=\frac{1}{2}\left[1-\frac{1}{\left(N_{r} M\right)^{\alpha}}\right] \tag{17}
\end{equation*}
$$

Then Eqs. (14) and (15) reduce to

$$
\begin{gather*}
1=\frac{\alpha v}{4}(1-\delta) M\left[1+\delta \alpha\left(N_{r} M\right)^{\alpha}\right] \tag{18}\\
\delta=\frac{1}{2}\left[1-\frac{1}{\left(N_{r} M\right)^{\alpha}}\right] \tag{19}
\end{gather*}
$$

Substituting (19) into (18), we obtain

$$
\begin{equation*}
1=\frac{\alpha v}{4}\left(1+\left(N_{r} M\right)^{-\alpha}\right) M\left[1+\frac{1}{2}\left(1-\left(N_{r} M\right)^{-\alpha}\right) \alpha\left(N_{r} M\right)^{\alpha}\right] \tag{20}
\end{equation*}
$$

Eq. (20) serves as the basis for our analysis of δ and σ.
First, about δ as claimed in (i). Denote

$$
\begin{equation*}
X:=N_{r} M \tag{21}
\end{equation*}
$$

and view the right-hand side of (20) as a function of X and $N_{r}, f\left(X, N_{r}\right)$, that is,

$$
\begin{align*}
1 & =\frac{\alpha v}{4 N_{t}}\left(1+X^{-\alpha}\right) X\left[1+\frac{1}{2}\left(1-X^{-\alpha}\right) \alpha X^{\alpha}\right] \\
& =\frac{\alpha v}{4 N_{r}}\left(X+X^{1-\alpha}\right)\left[\left(1+\frac{1}{2} \alpha\right)+\frac{1}{2} \alpha X^{\alpha}\right] \tag{22}
\end{align*}
$$

Recall $0<\alpha<1$, which implies $1-\alpha>0$ and $1-\frac{\alpha}{2}>0$. Therefore, all the terms in the expression of $f\left(X_{;} N_{r}\right)$ are both positive and monotonically nondecreasing. We have the following properties of $f\left(X ; N_{r}\right)$:
(1) $f\left(0 ; N_{r}\right)=0 ; f\left(\infty ; N_{r}\right)=\infty$ for all $v, N_{\mathrm{r}}>0$.
(2) $f\left(X ; N_{r}\right)$ increases strictly in X and decreases strictly in N_{r}.

Consequently, there exists a unique $X\left(N_{r}\right)>0$ such that $f\left(X\left(N_{r}\right) ; N_{r}\right)=1$. Clearly $X\left(N_{r}\right)$ monotonically increases in N_{r} due to the monotonicity of $f\left(X\left(N_{r}\right) ; N_{r}\right)$ w.r.t. X and N_{r}. By further expressing δ in terms of X via (19) and (21), $\delta=\left[1-X^{-a}\right] / 2$, we see δ increases in X, thus in N_{r}. Moreover, the natural bound for interior $\delta>0$ requires $X>1$, which is equivalent to $f\left(1 ; N_{r}\right)<1$ due to the monotonicity of f in X. By straightforward rearrangement, $f\left(1 ; N_{r}\right)<1$ becomes Condition $R=(\alpha v) / 2 / N_{r}<1$. This completes the proof of Part (i).

Now, consider σ. The uniqueness of $X>1$ satisfying $f\left(X ; N_{r}\right)=1$ implies the uniqueness of σ. Indeed, by definitions of X, M, and S, we have $X=N_{r} M=N_{r} k S^{\alpha-1}=N_{r} k(\sigma V)^{\alpha-1}$. Under condition $N_{r}, K>0$ and $X>0$ according to the argument above, we have

$$
\begin{equation*}
\sigma=\left(\frac{N_{r} k}{X}\right)^{\frac{1}{\alpha-1}} / V>0 \tag{23}
\end{equation*}
$$

Therefore, it is never optimal for the platform to be completely closed, $\sigma=0$ as long as $v, N_{r}, k>0$. We now demonstrate the monotonicity property of σ with respect to N_{r}, or equivalently to δ, to complete the proof of Part (ii).

Noticing (23) can be rewritten as

$$
\begin{equation*}
\sigma=\left(\frac{k}{M}\right)^{\frac{1}{\alpha-2}} / V>0 \tag{24}
\end{equation*}
$$

We now convert $f\left(X ; N_{r}\right)$ into a function of M and N_{r}. To be more precise, for

$$
\begin{equation*}
Q:=\left(N_{r}\right)^{\alpha} \tag{25}
\end{equation*}
$$

define the function

$$
\begin{equation*}
g(M ; Q):=f\left(X ; N_{r}\right)=\frac{\alpha v}{4}\left(M+M^{1-\alpha} / Q\right)\left[\left(1-\frac{1}{2} \alpha\right)+\frac{1}{2} \alpha Q M^{\alpha}\right] \tag{26}
\end{equation*}
$$

Parallel to previous arguments, we have $g(0 ; Q)=0, g(\infty ; Q)=\infty$; thus, for all $Q>0$, there exists a unique $M(Q)>0$ such that $g(M(Q) ; Q)=1$. The monotonicity property of $M(Q)$ w.r.t. Q is thus implied in the monotonicity of $g(M$; $Q)$ w.r.t. both M and Q.

As for the monotonicity of g, it is clear $g(M ; Q)$ increases strictly in M. With respect to Q, consider the first-order partial derivative

$$
\begin{align*}
\frac{\partial g}{\partial Q} & =\frac{\alpha v}{4}\left(-M^{1-\alpha} / Q^{2}\right)\left[\left(1-\frac{1}{2} \alpha\right)+\frac{1}{2} \alpha Q M^{\alpha}\right]+\frac{\alpha v}{4}\left(M+M^{-\alpha} / Q\right) \frac{1}{2} \alpha M^{a} \\
& =\frac{\alpha v}{4}\left(-M^{1-\alpha} / Q^{2}\right)\left(1-\frac{1}{2} \alpha\right)+\frac{\alpha v}{4} \frac{1}{2} \alpha M^{1+\alpha} \tag{27}\\
& =\frac{\alpha v}{4}\left[-\frac{\left(1-\frac{1}{2} \alpha\right)}{M^{2} Q^{2}}+\frac{1}{2} \alpha M^{1+\alpha}\right]
\end{align*}
$$

Clearly,

$$
\begin{align*}
\left\{\frac{\partial g}{\partial Q}>0\right\} & \Leftrightarrow\left(M^{\alpha} Q\right)^{2}>\frac{(1-\alpha / 2)}{\alpha / 2} \\
& \Leftrightarrow M^{\alpha} Q>\sqrt{\frac{(1-\alpha) / 2}{\alpha / 2}} \tag{28}\\
& \Leftrightarrow(1-2 \delta)^{-1}>\sqrt{\frac{(1-\alpha / 2)}{\alpha / 2}} \quad[b y(19)] \\
& \Leftrightarrow \delta<\frac{1-\sqrt{\frac{\alpha}{2-\alpha}}}{2}=\bar{\delta}
\end{align*}
$$

Combining equations $f\left(X ; N_{r}\right)=1$ and $\delta=\left[1-X^{-\alpha}\right] / 2, \bar{\delta}$ uniquely determines an $\overline{N_{d}}$.
The monotonicity of δ w.r.t. N_{r} in Part (i) further yields

$$
\begin{equation*}
\left\{\frac{\partial g}{\partial Q}>0\right\} \Leftrightarrow N_{r}<\overline{N_{d}} \tag{29}
\end{equation*}
$$

Therefore, we conclude on $\left\{N_{r}<\overline{N_{d}}\right\}$ or $\{\delta<\bar{\delta}\}$,

$$
\begin{array}{rlr}
g(M, Q)=1 & \Rightarrow M \downarrow Q & {[g \text { increases in } M \text { and in } Q]} \\
& \Leftrightarrow \sigma \uparrow Q & {[\text { by }(24)]} \\
& \Leftrightarrow \sigma \uparrow N_{r} & {[\text { by }(25)]} \tag{30}\\
& \Leftrightarrow \sigma \uparrow \delta \quad\left[\text { monotonicity of } \delta \text { w.r.t. } N_{r} \text { in Part (i) }\right]
\end{array}
$$

In parallel, on $\left\{N_{r} \geq \overline{N_{d}}\right\}$ or $\{\delta \geq \bar{\delta}\}, \sigma \downarrow \delta, N_{r}$. Consequently, σ achieves its maximum at $\delta \geq \bar{\delta}, N_{r}=\overline{N_{d}}$. This completes the proof of Part (iii).

By combining Eqs. (19), (21), and (23) under condition $R<1$, we can further express σ as a function of δ.

$$
\begin{equation*}
\sigma=\left(N_{r} k(1-2 \delta)^{1 / \alpha}\right)^{\frac{1}{1-\alpha}} / V \tag{31}
\end{equation*}
$$

Clearly, $\sigma<1$ is guaranteed by $\left(N_{r} k\right)^{1 /(1-\alpha)} / V<1$, or equivalently, $N_{r} k / V^{1-\alpha}=U<1$. This confirms Part (ii) of the proposition. Finally, it is easy to see N_{r} monotonically increaess in N_{d} and $\omega=1-\rho$, and the proof is complete.

