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Appendix

art( :rw SPECIAL ISSUE: IT AND INNOVATION

Proof of Proposition 1 |

Recall from the model setup Eq. (5) that

7, =V(1-0)+1v(1- 8)k(oV )" +54v(1- 8)k"* (V)"

The corresponding first-order conditions w.r.t. J and o become

0= 3&72 = _V"'%V(l— 5)[](0(0'&711/0’ + 50(2](”0{(]\/;)“0'”2711/“2]

)
or o o 2

0="2¢=—Lvk(oV)" +1v(1-8)k"*(N,)*(oV)" — 51vk"™*(N,)* (o))"
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Table Al. Parameter Definitions

Var Parameter Definition
o Share of platform (%) opened to developers
t, o Time until exclusionary period expires (discount ¢ = ¢™)
a Technology in Cobb Douglas production
Coefficient of reuse
M, M, Market spillovers from developers and users, index sizes of network effects
N, N, Number of developers and users respectively
p Price of individual developer applications p = v(1 - 9)
p Technological uncertainty; equal to 1 — ®
v Value, per unit, of developer output
V Standalone value of sponsor’s platform
Vi Output of a single developer in period i and input to developers in period i + 1 with y,= oV and y., = b/,
1) Probability of success for a given innovation; equal to 1 —p

Multiply Eq. (10) by o to get

Denote

0=—oV +Lkon(1- 5)[(01/)“ + Sk (N ) GV)az]

S:=oV

Then Eq. (12) becomes

or

§=4kor(1-8) 5" + dok"(N,)" s |

1= (ks )5(1- 5)[1 + 505(kN,S’H)a]

Similarly, Eq. (11) becomes

Equivalently,

Denote

Then

0=1VkS” +3v(1= )K" (N, )"S” ~ S4vk"*(N,)"s”
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Then Egs. (14) and (15) reduce to

1= (1-8) M1+ 5o N, M)"] as)
0= %[1_ (Nﬂf)“] 4

Substituting (19) into (18), we obtain
1= (1 (N, M) ) m[1+4(1= (N, M) 7 JoV, M) | 20)

Eq. (20) serves as the basis for our analysis of  and o.

First, about ¢ as claimed in (i). Denote
X:=NM 21

and view the right-hand side of (20) as a function of X and N,, f{X, NV,), that is,

= (1 X)X |1+ 4 (1- X )ox ] .

=& (X+X1’“)[(1+%a)+%0&(“]

Recall 0 < a < 1, which implies 1 —a >0 and 1 — % > 0. Therefore, all the terms in the expression of f{X; N,) are both positive and

monotonically nondecreasing. We have the following properties of X, N,):

(1) A0; N,)=0;f(eo; N,) =0 for all v, N, > 0.
(2) AX: N,)increases strictly in X and decreases strictly in N,.

Consequently, there exists a unique X(N,) > 0 such that f{X (V,); N,) = 1. Clearly X(V,) monotonically increases in N, due to the monotonicity
of AX(N,); N,) w.r.t. X and N,. By further expressing J in terms of X via (19) and (21), 6 = [1 — X**]/2, we see J increases in X, thus in N,.
Moreover, the natural bound for interior 6 > 0 requires X > 1, which is equivalent to f{1; N,) < 1 due to the monotonicity of fin X. By straight-
forward rearrangement, f{1; N,) < 1 becomes Condition R = (av)/2/N, < 1. This completes the proof of Part (i).

Now, consider 0. The uniqueness of X > 1 satisfying fAX; N,) = 1 implies the uniqueness of . Indeed, by definitions of X, M, and S, we have
X=NM = NiS“' = Nk(cV)*'. Under condition N,, K >0 and X > 0 according to the argument above, we have

0'=(N);")ﬁ/V>0 (23)

Therefore, it is never optimal for the platform to be completely closed, 0 =0 as long as v, N,, k> 0. We now demonstrate the monotonicity
property of o with respect to N,, or equivalently to J, to complete the proof of Part (ii).

Noticing (23) can be rewritten as
1
o=(&)" /V >0 (24)
We now convert f{X; N,) into a function of M and »,. To be more precise, for

0:=(N,)" (25)

define the function
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g(M:Q):= f(X;N,)=2(M+ M/ Q)[(1-La)++a0M"] (26)

Parallel to previous arguments, we have g(0; Q) = 0, g(e; Q) = o; thus, for all Q > 0, there exists a unique M(Q) > 0 such that g(M(Q); Q) =1.
The monotonicity property of M(Q) w.r.t. Q is thus implied in the monotonicity of g(M, Q) w.r.t. both M and Q.

As for the monotonicity of g, it is clear g(M; Q) increases strictly in M. With respect to Q, consider the first-order partial derivative

% =e(-M"/Q)(1-1a)+LoOM" |+ 2(M+ M/ Q)L oM
@(-M" Q) 1-La)+ %L oM™ @7

.Jsl%

[_ (1-3a) +%Wl+a]

MaQZ

Clearly,

{i>0} = (M0) > 155

PN MaQ> (170()/2

al2

(28)
-1 1-a/2
o (1-20)" > 5 [y 19))
& 6< —1_% =0
Combining equations f{iX; N,)=1and J =[1 — X*]/2, 5 uniquely determines an Nid .
The monotonicity of d w.r.t. N, in Part (i) further yields
{£>0lo N <N, (29)
Therefore, we conclude on {N, < N7d} or {5 <é },
g(M,Q) =1=>MIl0 [g increases in M and in Q]
eoTQ [by(24)]
(30)

soTN, [by(25)]
o166  [monotonicity of §w.r.t. N, in Part (i)]

In parallel, on {N,, > Fd} or {5 >5 } ,o 1 6, N.. Consequently, o achieves its maximum at O > g ,N, = Fd . This completes the proof
of Part (iii).

By combining Egs. (19), (21), and (23) under condition R < 1, we can further express o as a function of é.
1
a:(N,k(l—ch)”“)l’“/V 31)

Clearly, o < 1 is guaranteed by (N, k)""/V < 1, or equivalently, N.k/V**= U< 1. This confirms Part (ii) of the proposition. Finally, itis easy
to see NV, monotonically increaess in N, and w = 1 — p, and the proof is complete.
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