
RESEARCH ARTICLE

A MODEL OF COMPETITION BETWEEN PERPETUAL
SOFTWARE AND SOFTWARE AS A SERVICE

Zhiling Guo and Dan Ma
School of Information Systems, Singapore Management University, 80 Stanford Road,

Singapore 178902 SINGAPORE {zhilingguo@smu.edu.sg} {madan@smu.edu.sg}

Appendix A

Modeling Notations

Table A1. Modeling Notations

Notation Definition

t 0 [0, 1] Time within the software life cycle [0,1]

q Quality of the old perpetual software product

ρ New perpetual software quality improvement ratio over the old version

θ The SaaS initial quality improvement ratio over the old perpetual software, 1 < θ < ρ
α Rate of software quality improvement for the SaaS product

pu One-time upgrade price for existing users to upgrade to the new perpetual software

pn One-time purchase price for new users to buy the new perpetual software

ps The SaaS price for per unit time use of the software

nt The network size at time t, where nt = {1, 2}

k Marginal network effect

δ Perpetual software incremental quality improvement ratio over the old version

cα The SaaS vendor's quality improvement cost per unit time

c OG users’ cost of switching to SaaS

MIS Quarterly Vol. 42 No. 1—Appendices/March 2018 A1

Guo & Ma/Perpetual Software and Software as a Service

Appendix B

Elimination of Strategy Pairs in Table 1

Given the software quality improvement ρq > q, the OG consumers are willing to pay a positive price to upgrade to the new perpetual software.
Because all software development costs have been sunk, the perpetual software vendor can always sell to the OG users at a positive price to
earn non-zero profit. So in equilibrium, any strategy pair that involves the OG users that continue to use the old version of perpetual software
is dominated by other induced user strategies. We therefore eliminate the first row of strategy pairs in Table 1.

Similarly, (Old + SaaS, SaaS) and (SaaS, SaaS) can be eliminated because the perpetual software vendor earns zero profit. Because the
perpetual software has the quality advantage over the SaaS at time 0, the perpetual software vendor, by charging a very small positive upgrade
price ε, is able to induce the OG consumers to upgrade and earn a non-zero profit.

Also note that if the OG users choose SaaS, the NG users prefer SaaS as well. The reason is that the OG users are more “sticky” to the perpetual
software than the NG users because of their reserve utility from the old perpetual software. Therefore, neither (SaaS, New) nor (SaaS, New
+ SaaS) can achieve and sustain equilibrium.

Finally, once both OG and NG users adopt the new version perpetual software, they become identical. They should take the same action
afterward—either they both continue to use the new version or they switch to SaaS at some time point simultaneously. This rules out (Upgrade,
New + SaaS) and (Upgrade + SaaS, New). As a result, only six strategy pairs, SP1 ~ SP6, are possible in equilibrium.

Appendix C

Parameter Configuration for Strategy Pairs SP1 ~ SP6

Figure C1 graphically shows how the six possible strategy pairs can be supported by different combinations of the SaaS quality improvement
rate and the SaaS price. The parameter configurations for each strategy pair are presented in Table C1. We observe that the network effect
will affect the appearance of SP2, SP4, and SP5. When the network effect is stronger, users tend to choose the same type of software; that is,
when the dashed line in Figure C1 shifts up to the left, the appearance of SP2 becomes less likely, while that of E4 and E5 becomes more likely.

Figure C1. Possible Outcomes and Feasible Regions

A2 MIS Quarterly Vol. 42 No. 1—Appendices/March 2018

Guo & Ma/Perpetual Software and Software as a Service

Table C1. Parameter Configuration for Each Strategy Pair

Strategy Pair Feasible Conditions

SP1 (Upgrade, New) ps $ α – (ρ – θ)q
SP2 (Upgrade, SaaS) ps $ α + k – (ρ – θ)q
SP3 (Old+SaaS, New) max[(θ – 1)q, α + k – (ρ – θ)q] # ps # α + (θ – 1)q
SP4 (Upgrade+SaaS, SaaS) ps # α + k – (ρ – θ)q
SP5 (Old+SaaS, New+SaaS) (θ – 1)q # ps # α + k – (ρ – θ)q
SP6 (Upgrade+SaaS, New+SaaS) ps # α – (ρ – θ)q

SP1: Because both groups adopt the new perpetual software, they are identical after adoption. In SP1, no groups switch to SaaS over the entire
software life cycle, implying that the SaaS payoff at the end of the software life cycle is no higher than the new perpetual software. Hence,
θq + α + 2k – ps # ρq + 2k, which leads to ps $ α – (ρ – θ)q.

SP2: To prevent the OG users from switching to SaaS, the SaaS payoff at the end of the software life cycle should not be higher than payoff
from the new perpetual software for OG users. Note that, without switching, the OG users derive the network utility k; if switching, they can
enjoy the network utility 2k because the NG users have adopted SaaS. Hence, θq + α + 2k – ps # ρq + k, which leads to ps $ α + k – (ρ – θ)q.

SP3: For the OG users to switch but for NG users not to switch during the software life cycle, we have three conditions: (1) the OG users prefer
the old perpetual software rather than SaaS at time 0 (i.e., θq + k – ps # q + k); (2) the OG users prefer SaaS rather than the old perpetual
software at the end of the software life cycle (i.e., θq + α + k – ps $ q + k); and (3) the NG users prefer the new perpetual software rather than
SaaS at the end of the software life cycle (i.e., θq + α + 2k – ps # ρq + k). All together, we have max[(θ – 1)q, α + k – (ρ – θ)q] # ps # α +
(θ – 1)q.

SP4: For switching to occur, OG users derive higher payoff from SaaS than from the new perpetual software at the end of the software life
cycle. Hence, θq + α + 2k – ps $ ρq + k, which leads to ps # α + k – (ρ – θ)q.

SP5: We have two conditions: (1) the OG users prefer the old perpetual software rather than SaaS at time 0 (i.e., θq + k – ps # q + k); and
(2) the NG users derive higher payoff from SaaS than from the new perpetual software at the end of the software life cycle (i.e., θq + α + 2k
– ps $ ρq + k). Therefore, (θ – 1)q # ps # α + k – (ρ – θ)q.

SP6: Note that both OG and NG users must switch at the same time. They derive higher payoff from SaaS than from the new perpetual
software at the end of the software life cycle. Hence, θq + α + 2k – ps $ ρq + 2k, which leads to ps # α – (ρ – θ)q.

Appendix D

Baseline Model Equilibrium Outcomes

Table D1 presents vendors’ optimal prices, profit, consumer surplus, and social welfare under each equilibrium in the baseline model.

MIS Quarterly Vol. 42 No. 1—Appendices/March 2018 A3

Guo & Ma/Perpetual Software and Software as a Service

Table D1. Equilibrium Prices, Profits, Consumer Surplus, and Social Welfare: Baseline Model

(a) Equilibrium Prices: Baseline Model

Equilibrium pu pn ps

Monopoly (M) ()ρ − +1 q k ρq k+ 2 NA

Entry Deterrence

(I)
()ρ θ α− − +q k

2 ()ρ θ α− − +q k
2

0

Market Segmen-

tation (IIa)
()ρ − 1 q ()ρ − +1 2q k ()θ α− + +1

2
q k

Market Segmen-

tation IIb)
()ρ − 1 q α

2
2+ k ()α ρ θ+ − −k q

Sequential

Dominance (IIIa)
()[] ()[]α ρ θ α ρ θ

α
+ − + + −q k q4

8

()[] ()[]α ρ θ α ρ θ
α

+ − + + −q k q4

8

()α ρ θ− − q
2

Sequential

Dominance (IIIb)
() ()[] ()()α α ρ ρ θ ρ θ

α
k k q q+ − + − − − −1 1 1

6

2 ()[] ()[]α ρ θ α ρ θ
α

+ − + + −q k q4

8

()α ρ θ− − q
2

(b) Equilibrium Profits: Baseline Model

Equilibrium πperp πSaaS

Monopoly (M) ()2 1 3ρ − +q k NA

Entry Deterrence

(I)
()2 2ρ θ α− − +q k 0

Market Segmen-

tation (IIa)
()ρ − 1 q ()θ α− + +1

2
q k

Market Segmen-

tation IIb)
()ρ − 1 q ()α ρ θ+ − −k q

Sequential

Dominance (IIIa)
()[] ()[]α ρ θ α ρ θ

α
+ − + + −q k q4

4
()[]α ρ θ

α
− − q

2

2

Sequential

Dominance (IIIb)
()[] ()[] ()[]2 4 2

8

2α ρ θ α ρ θ α ρ θ
α

+ − + + − − − + −q k q q ()[]α ρ θ
α

− − q
2

2

(c) Equilibrium Consumer Surplus and Social Welfare: Baseline Model

Equilibrium CSOG CSNG SW

Monopoly (M) q k+ 0 2 4ρq k+

Entry Deterrence

(I)
θ αq k+ +

2
θ αq k+ +

2
2 4ρq k+

Market Segmen-

tation (IIa)

q k+ q ()ρ θ α+ + +q k2
2

Market Segmen-

tation IIb)

q k+ ρ αq −
2 ()ρ θ α+ + +q k2

2

Sequential

Dominance (IIIa)
() ()[]3

2

α α ρ θ ρ θ
α

k k q+ + − − () ()[]3

2

α α ρ θ ρ θ
α

k k q+ + − − () ()3 16 2 3 3

4

2 2 2α α α ρ θ ρ θ
α

+ + + + −k q q

Sequential

Dominance (IIIb)
() ()[] ()α α α ρ θ ρ θ ρ θ

α

2 2 212 2 2 4 2

8

+ + + + − − + + −k k q q () ()[]3

2

α α ρ θ ρ θ
α

k k q+ + − − () ()3 16 2 3 3

4

2 2 2α α α ρ θ ρ θ
α

+ + + + −k q q

A4 MIS Quarterly Vol. 42 No. 1—Appendices/March 2018

Guo & Ma/Perpetual Software and Software as a Service

Appendix E

Proofs for Baseline Model

Proof of Proposition 1 (Monopoly Market Equilibrium)

Proof. When no entry threat arises from the SaaS vendor, the perpetual software vendor is the monopolist. When the vendor releases the new

version software at time 0, it charges a purchase price to the NG users so that it extracts all surpluses from them, and so . p q kn
M = +ρ 2

Meanwhile, it charges an upgrade price pu as high as possible to induce the OG users to upgrade to the new version (i.e., ρq + 2k – pu $ q +

k)). Therefore, . The vendor’s profit is . ()p q kn
M = − +ρ 1 ()π ρM

u
M

n
Mp p q k= + = − +2 1 3

Proof of Proposition 2 (Entry Deterrence Equilibrium)

Proof. This is the case in which α # (ρ – θ)q. Because the SaaS quality is always lower than the new perpetual software, users do not switch.
The perpetual software vendor can choose either the entry deterrence strategy to serve both user groups and drive the SaaS vendor out of the
market or it can choose the market segmentation strategy and serve OG users only. The equilibrium strategy pair corresponding to the former
case is SP1 (Upgrade, New), while in the latter case it is SP2 (Upgrade, SaaS).

Consider SP1 (Upgrade, New). Given that NG users adopt the new version perpetual software, the OG users have three strategies to consider.

If they keep using the old version, their total utility is q + k; if OG users choose the SaaS at time 0, their total utility is ;()θ αq t k dt+ +0
1

and if OG users choose to upgrade and then keep using the new perpetual software, their total utility is ρq + 2k – pu.

To ensure that the OG users prefer upgrading to the new version rather than continuing to use the old version, their total utility must be ρq +
2k – pu $ q + k, which is pu # (ρ – 1)q + k (IC1). Meanwhile, the perpetual software vendor needs to make sure that OG users prefer upgrading

rather than adopting SaaS, even if the SaaS price is reduced to zero. That is, the entry deterrence condition is ρq k pu+ − ≥2

, and it gives (IC2). We can show that (IC1) is not binding.()θ αq t k dt+ +0
1

()p q ku ≤ − + −ρ θ α
2

Similarly, given that OG users choose to upgrade, the NG users’ total utility is ρq + 2k – pn if they choose the new perpetual software and

 if they opt for SaaS at time 0 at zero price. To ensure that the NG users prefer the new perpetual software to the SaaS,()θ αq t k dt+ +0
1

even if the SaaS price is zero, their total utility must be ; that is, (IC3).()ρ θ αq k p q t k dtn+ − ≥ + +2
0

1

()p q kn ≤ − + −ρ θ α
2

Because , by (IC2) and (IC3) the perpetual software vendor sets the prices at respective upper bounds: p pu n≤

. Consequently, we obtain the perpetual software vendor’ s profit at ,()p p q kn
SP

u
SP1 1

2
= = − + −ρ θ α ()π ρ θ αperp

SP q k1 2 2= − + −
and the SaaS vendor is out of the market.

Finally, we need to prove that the perpetual software vendor earns a higher profit under SP1 than SP2, which is true when

, as shown in the proof of Proposition 3. Hence, the perpetual software vendor deters the SaaS vendor’s entry when
()k K q≥ = − − +

1
2 1

2

α ρ θ

.k K≥ 1

MIS Quarterly Vol. 42 No. 1—Appendices/March 2018 A5

Guo & Ma/Perpetual Software and Software as a Service

Proof of Proposition 3 (Market Segmentation Equilibrium—α Low)

Proof. Consider SP2 (Upgrade, SaaS). Given that the NG users adopt SaaS, if the OG users continue to use the old version perpetual software,

their total utility is q + k; if the OG users choose SaaS, the total utility is ; and if they choose to upgrade and then()θ αq t k p dts+ + − 2
0

1

continue to use the new perpetual software over the entire software life cycle, the total utility is .ρq k pu+ −

To ensure the OG users prefer to upgrade rather than to continue to use the old version, their total utility must be ρq k p q ku+ − ≥ +

and thus (IC4). Also, to ensure that the OG users prefer to upgrade rather than opt for SaaS, their total utility must be()p qu ≤ −ρ 1

 and thus (IC5).()ρ θ αq k p q t k p dtu s+ − ≥ + + − 2
0

1

()p p q ks u≥ − − − +ρ θ α
2

Similarly, given that OG users upgrade, the NG users’ total utility is if they choose the new perpetual software andρq k pn+ −2

 if they opt for SaaS at time 0. To ensure that the NG users prefer SaaS, their total utility must be()θ αq t k p dts+ + −0
1

; that is, (IC6).()ρ θ αq k p q t k p dtn s+ − ≤ + + −2
0

1

()p p q ks n≤ − − − +ρ θ α
2

To maximize its profit, the perpetual software vendor sets pn as high as possible so that the SaaS vendor can also charge a high enough price
ps, which in turn allows the perpetual software vendor to charge a high upgrade price pu. As a result, the perpetual software vendor charges

to make the OG users’ IC constraint (IC4) binding. It sets so that the SaaS vendor charges the()p qu
SP2 1= −ρ ()p q kn

SP2 1 2= − +ρ

highest possible by (IC6) that does not violate (IC5). Finally, under the condition , we can verify()p q ks
SP2

2
1= − + +θ α ()α ρ θ< − q

that the condition for SP2, as specified in Table C1, holds.()p k qs > + − −α ρ θ

Finally, we need to show that the perpetual software vendor’s profit under SP2, , is higher than its profit under SP1. ()π ρperp
SP q2 1= −

Solving , we have k < K1, where K1 is defined in Proposition 2. Hence, SP2 (Upgrade, SaaS) sustains as an equilibrium userπ πperp
SP

perp
SP2 1>

strategy pair when k < K1. Also note that K1 = 0 when α = (ρ – 2θ + 1)q =˙ α.

Proof of Proposition 4 (Sequential Dominance Equilibrium)

Proof. Consider SP6 (Upgrade+SaaS, New+SaaS). The switching time ts3 is determined by θq + αts3 + 2k – ps = ρq + 2k, so that

. The SaaS vendor’s profit is expressed as . Solving this optimization problem yields the optimal()ts
p qs

3 =
+ −ρ θ

α
()

2 1ps
p qs−





+ −ρ θ
α

SaaS price . We can verify that ps
* satisfies the SP6 condition in Table 3. Consequently, . Several()ps

q* =
− −α ρ θ

2

()t
q

s3 2
* =

+ −α ρ θ
α

incentive compatibility conditions must be satisfied, as follows.

Given that the OG users choose Upgrade+SaaS, the NG users prefer New+SaaS rather than SaaS if ()ρq k t ps n+ − +2 3
*

. So (IC7).() () ()θ α θ α θ αq t k p dt q t k p dt q t k p dts s s
t

t

t s

s

s

+ + − ≥ + + − + + + − 2 2
3

3

3

1

0

1
* * *

*

*

*
pn ≤

()[] ()[]α ρ θ α ρ θ
α

+ − + + −q k q4

8

A6 MIS Quarterly Vol. 42 No. 1—Appendices/March 2018

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A7

Given that the NG users choose New+SaaS, the OG users prefer Upgrade+SaaS rather than Old+SaaS if (ݍߩ + ∗௦ଶݐ(2݇ − ௨݌ + ∗ଵ௧ೞమ׬ ݍߠ) ݐߙ+ + 2݇ − ݐ݀(∗௦݌ ≥ ݍ) + ∗௦ଵݐ(݇ + ∗௧ೞమ∗௧ೞభ׬ ݍߠ) + ݐߙ + ݇ − ݐ݀(∗௦݌ + ∗ଵ௧ೞమ׬ ݍߠ) + ݐߙ + 2݇ − ௨݌ The condition gives .ݐ݀(∗௦݌ ≤௞ఈି(ఘିଵ)(ఏିଵ)௤మା[ఈ(ఘିଵ)ା௞(ఘିఏ)]௤ଶఈ (IC8). Note that the switching time ݐ௦ଶ∗ = ∗௦ଷݐ . The switching time ݐ௦ଵ, for Old+SaaS, is determined by ݍߠ + ௦ଵݐߙ + ݇ − ௦݌ = ݍ + ݇, so that ݐ௦ଵ = ௣ೞି(ఏିଵ)௤ఈ . Substituting ݌௦∗ into the expression of ݐ௦ଵ, we have ݐ௦ଵ∗ = ఈି(ఘାఏିଶ)௤ଶఈ .

If ߙ ≤ ߩ) + ߠ − ∗௦ଵݐ ,ݍ(2 < 0, so that OG users prefer SaaS. To ensure the OG users prefer Upgrade+SaaS rather than SaaS, we need (ݍߩ ∗௦ଷݐ(2݇+ − ௨݌ + ∗ଵ௧ೞయ׬ ݍߠ) + ݐߙ + 2݇ − ݐ݀(∗௦݌ ≥ ௧ೞయ∗଴׬ ݍߠ) + ݐߙ + ݇ − ݐ݀(∗௦݌ + ∗ଵ௧ೞయ׬ (θݍ + ݐߙ + 2݇ − ௨݌ ,that is ;ݐ݀(∗௦݌ ≤[ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]଼ఈ (IC9). So by (IC7) and (IC9) we have ݌௨ௌ௉଺ = ௡ௌ௉଺݌ = [ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]଼ఈ , and the perpetual software vendor’s

profit is ߨ௣௘௥௣ௌ௉଺ = [ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]ସఈ .

If ߙ > ߩ) + ߠ − ∗௦ଵݐ ,ݍ(2 > 0, by (IC7) and (IC8) we have ݌௨ௌ௉଺ = ௞ఈି(ఘିଵ)(ఏିଵ)௤మା[ఈ(ఘିଵ)ା௞(ఘିఏ)]௤ଶఈ < ௡ௌ௉଺݌ = [ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]଼ఈ , and ߨ௣௘௥௣ௌ௉଺ = ଶ[ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]ି[ఈି(ఘାఏିଶ]మ଼ఈ .

Under both cases, the SaaS price is ݌௦ௌ௉଺ = ఈି(ఘିఏ)௤ଶ , and the SaaS vendor’s profit is ߨௌ௔௔ௌௌ௉଺ = [ఈି(ఘିఏ)௤]మଶఈ .

Another outcome under the strategy pair SP2 (Upgrade, SaaS) is solved in Proposition 5. Comparing the two vendors’ respective profits
under SP2 and SP6, we show that when the network effect ݇ is stronger than a threshold value ܭଶ (details in the proof of Proposition 5), SP6
(Upgrade+SaaS, New+SaaS) emerges as the final equilibrium user strategy.

Proof of Proposition 5 (Market Segmentation Equilibrium—ࢻ High)

Proof. Consider SP2 (Upgrade, SaaS). The analysis is similar to the proof for Proposition 3. The only difference is that when ߙ > ߩ)2 − ,ݍ(1
the constraint ݌௦ ≥ ߙ + ݇ − ߩ) − ௦ௌ௉ଶ݌ ,is binding. Therefore (refer to Table 3) ݍ(ߠ = ߙ + ݇ − ߩ) − ߙ if ݍ(ߠ > ߩ)2 − Also, we need .ݍ(1
to reexamine the IC conditions. (IC5) becomes ݌௨ ≤ ఈଶ. Because (ߩ − ݍ(1 ≤ ఈଶ, the perpetual software vendor charges ݌௨ௌ௉ଶ = ߩ) − so ݍ(1

that (IC4) is binding. By (IC6), we have ݌௡ௌ௉ଶ ≥ ఈଶ + 2݇. As a result, when ߙ > ߩ)2 − ௣௘௥௣ௌ௉ଶߨ the perpetual software vendor's profit is ,ݍ(1 ߩ)= − ௌ௔௔ௌௌ௉ଶߨ and the SaaS vendor's profit is ,ݍ(1 = ߙ + ݇ − ߩ) − .ݍ(ߠ

The optimal prices and profits for ߙ ≤ ߩ)2 − .are the same as in Proposition 3 ݍ(1

Finally, we compare profits of the two vendors under both SP2 (Upgrade, SaaS) and SP6 (Upgrade+SaaS, New+SaaS). The latter is given in
Proposition 4. There are three cases:

Case (1) (ߩ − ݍ(ߠ ≤ ߙ ≤ ߩ) + ߠ − ௣௘௥௣ௌ௉଺ߨ ,For the perpetual software vendor .ݍ(2 < ௣௘௥௣ௌ௉ଶߨ if ݇ < ఈ(ఘିଵ)௤ఈା(ఘିఏ)௤ − ఈା(ఘିఏ)௤ସ ≐ ݇ଶ. At both

boundary values, ߙ = ߩ) − ߙ and ݍ(ߠ = ߩ) + ߠ − ଶ݇ ,ݍ(2 = (ఏିଵ)௤ଶ . In addition, we can show that there exists ߙො = [2ඥ(ߩ − ߩ)(1 − (ߠ ߩ)− − ݍ[(ߠ ∈ ߩ)] − ,ݍ(ߠ ߩ) + ߠ − such that [ݍ(2
ப௞మபఈ > 0 for ߙ ∈ ߩ)] − ,ݍ(ߠ ො] andߙ

ப௞మபఈ < 0 for ߙ ∈ ,ොߙ] ߩ) + ߠ − Hence, the perpetual .[ݍ(2

software vendor prefers SP2 if ݇ < ݇ଶ. For the SaaS vendor, ߨௌ௔௔ௌௌ௉଺ < ௌ௔௔ௌௌ௉ଶߨ if ݇ > [ఈି(ఘିఏ)௤]మଶఈ − ߠ) − ݍ(1 − ఈଶ ≐ ݇ଵ. At ߙ = ߩ) − ݇ ,ݍ(ߠ ଵ ߠ)−= − ݍ(1 − (ఘିఏ)௤ଶ < 0, and
ப௞భபఈ < 0. Therefore, the inequality always holds. The SaaS vendor always prefers SP2.

Case (2) (ߩ + ߠ − ݍ(2 ≤ ߙ ≤ ߩ)2 − ௣௘௥௣ௌ௉଺ߨ ,For the perpetual software vendor .ݍ(1 < ௣௘௥௣ௌ௉ଶߨ if ݇ < ଼ఈ(ఘିଵ)௤ା[ఈି(ఘାఏିଶ)௤]మ଼[ఈା(ఘିఏ)௤] − ఈା(ఘିఏ)௤ସ ≐݇ଷ. At ߙ = ߩ) + ߠ − ଷ݇ ,ݍ(2 = (ఏିଵ)௤ଶ . Solving ݇ଷ = 0, we get two roots. One is smaller than the lower bound (ߩ + ߠ − ߙ ,and the other ,ݍ(2 = ߩ)] + ߠ − 2) + 2ඥ(ߩ − ߩ)(1 − ߩ)is greater than the upper bound 2 ,ݍ[(ߠ − So ݇ଷ .ݍ(1 > 0 in this range and the perpetual software
vendor prefers SP2 if ݇ < ݇ଷ. For SaaS, the condition is the same as in Case (1). The SaaS vendor always prefers SP2.

Case (3) ߙ > ߩ)2 − ௣௘௥௣ௌ௉଺ߨ ,For the perpetual software vendor .ݍ(1 < ௣௘௥௣ௌ௉ଶߨ if ݇ < ݇ଷ. The analysis is the same as in Case (2). For the SaaS

vendor, ߨௌ௔௔ௌௌ௉଺ < ௌ௔௔ௌௌ௉ଶߨ if ݇ > ି[ఈି(ఘିఏ)௤][ఈା(ఘିఏ)௤]ଶఈ ≐ ݇ସ and ݇ସ < 0. So the SaaS vendor always prefers SP2.

Guo & Ma/Perpetual Software and Software as a Service

A8 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

Overall, define ܭଶ = ൜݇ଶ ߙ	݂݅ ≤ ߩ) + ߠ − ଷ݇ݍ(2 ߙ	݂݅ > ߩ) + ߠ − .and we get the results in Proposition 5 ݍ(2

Appendix F

Effect of ࢻ and ࢑—Comparative Statics and Graphical Illustration

In this Appendix, we show how the two key parameters, ߙ and ݇, affect equilibrium prices, profits, consumer surplus, and social welfare
using comparative statics, and we also provide a graphical illustration.

Table F1. Comparative Statistics w.r.t. α
Equilibrium ࢃࡿ ࡳࡺࡿ࡯ ࡳࡻࡿ࡯ ࡿࢇࢇࡿ࣊ ࢖࢘ࢋ࢖࣊ ࢙࢖ ࢔࢖ ࢛࢖

 Monopoly (M) — — NA — NA — — —
 Entry Deterrence (I) ↓ ↓ — ↓ — ↑ ↑ —
 Market Segmentation (IIa) — — ↑ — ↑ — — ↑
 Market Segmentation (IIb) — — ↑ — ↑ — ↓ ↑
 Sequential Dominance (IIIa) ↑↓ ↑↓ ↑ ↑↓ ↑ ↓↑ ↑ ↑
 Sequential Dominance (IIIb) ↓ ↑↓ ↑ ↑↓ ↑ ↓↑ ↑ ↑

Table F2. Comparative Statistics w.r.t. k

Equilibrium ࢃࡿ ࡳࡺࡿ࡯ ࡳࡻࡿ࡯ ࡿࢇࢇࡿ࣊ ࢖࢘ࢋ࢖࣊ ࢙࢖ ࢔࢖ ࢛࢖
 Monopoly (M) ↑ ↑ NA ↑ NA ↑ — ↑
 Entry Deterrence (I) ↑ ↑ 0 ↑ — ↑ ↑ ↑
 Market Segmentation (IIa) — ↑ ↑ — ↑ ↑ — ↑
 Market Segmentation (IIb) — ↑ ↑ — ↑ ↑ — ↑
 Sequential Dominance (IIIa) ↑ ↑ — ↑ — ↑ ↑ ↑
 Sequential Dominance (IIIb) ↑ ↑ — ↑ — ↑ ↑ ↑

The graphic demonstrations in Figures F1 and F2 take the following parameter values: ݍ = ߩ ,1 = ߠ ,2 = 1.2, and ݇ = 0.02. In addition, ߙ = 0.64 indicates the equilibrium transition from entry deterrence to market segmentation; ߙ = 2 indicates the equilibrium transition from
market segmentation II-a to II-b; and ߙ = 2.25 indicates the equilibrium transition from market segmentation to sequential dominance.

Figure F1. Vendors’ Equilibrium Price and Profit Versus SaaS Quality Improvement

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50.64 2.252

Price

I. Entry
Deterrence

II. Market
Segmentation

III. Sequential
Dominance

II-a II-b III-b

SaaS Price
Perpetual New Price
Perpetual Upgrade Price

ߙ 0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Profit

SaaS Profit
Perpetual Profit

0.64 2 2.25

I. Entry
Deterrence

II. Market
Segmentation

III. Sequential
Dominance

II-a II-b III-b ߙ

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A9

Figure F2. Consumer Surplus and Social Welfare Versus SaaS Quality Improvement

As seen in these figures, when the SaaS’s quality improves at a low rate (ߙ ≤ 0.64), the incumbent perpetual software vendor reduces both
upgrade and purchase prices to deter the SaaS vendor’s entry, reducing its own profit and resulting in higher consumer surplus. This suggests
that the threat of entry by a potential competitor benefits customers.

As ߙ further increases, deterring the SaaS vendor’s entry becomes too costly. There is a threshold value (ߙ = 0.64) beyond which the
perpetual software vendor no longer blocks the SaaS vendor’s entry into the market. In the intermediate range of the SaaS quality
improvement rate (0.64 < ߙ ≤ 2.25), the perpetual software vendor pursues the market segmentation strategy by giving up NG users to the
SaaS vendor and focusing on serving only OG users with a high price. As a result, its price and profit are independent of the SaaS quality.
On the other hand, the SaaS vendor is only interested in exploiting NG users. As the SaaS quality increases at a higher rate, we see that the
SaaS’s price and profit monotonically increase.

Meanwhile, we observe that consumer surplus for both user groups drops significantly when the perpetual software vendor moves from the
entry deterrence to the market segmentation equilibrium after ߙ = 0.64. As ߙ increases from 2 to 2.25, the OG users’ surplus is unaffected,
but surprisingly, the NG users’ surplus decreases. The intuition is that, when the SaaS has a large quality advantage over the perpetual
software in the range, adopting the perpetual software becomes less attractive to NG users. Therefore, the SaaS vendor is able to price
aggressively to extract more consumer surplus from NG users without transferring any benefit to them

Finally, when the SaaS quality improvement rate is high enough (ߙ > 2.25), the SaaS becomes very attractive and the perpetual software
vendor finds it difficult to prevent OG users from switching to SaaS. Instead, it should reduce both upgrade and purchase prices significantly
to compete with the SaaS vendor for both user groups, moving to the sequential dominance strategy. The significant price-reduction pressure
from the perpetual software vendor pushes the SaaS vendor to reduce its price as well, which results in a large drop in the SaaS vendor’s
profit at the transition point (ߙ = 2.25). On the other hand, the competition makes users better off, and the consumer surplus for both user
groups jumps significantly upward.

As for social welfare, we also observe discrete upward and downward jumps at ߙ = 0.64 and 2.25, respectively, when the perpetual software
vendor switches its competitive strategy. It is socially inefficient to allow the SaaS vendor to enter the market in the range 0.64 < ߙ < 2;
and after the SaaS vendor enters the market, the resulting social welfare is even lower than the monopoly benchmark. There are two reasons.
First, the SaaS software has a low quality in this range. The NG users who adopt the SaaS therefore derive a lower average utility than in the
monopoly benchmark, leading to a decrease in social welfare. Second, the SaaS vendor’s entry results in a segmented market. Users are not
able to enjoy the highest possible network value (2݇) as they do in the benchmark case. Again, this reduces social welfare.

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Consumer
Surplus

OG consumer
NG consumer

I. Entry
Deterrence

II. Market
Segmentation

III. Sequential
Dominance

II-a II-b III-b

0.64 2 2.25 ߙ 0

1

2

3

4

5

6

7

Social
Welfare

0.64 2.25

I. Entry
Deterrence

II. Market
Segmentation

III. Sequential
Dominance

Competition
Monopoly

2

II-a II-b III-b ߙ

Guo & Ma/Perpetual Software and Software as a Service

A10 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

Appendix G

Perpetual Software Vendor's Incremental Quality Improvement

S1 (ࢾ૚, ૚): Patching before the SaaS Exceeds the Perpetual Software Qualityࢾ࢚

First, consider SP1 (Upgrade, New). Under SP1, the SaaS vendor is out of the market, even if it prices at 0. To ensure that the OG users
prefer Upgrade rather than Old, we need ݍߩ + 1)ݍଵߜ − (ఋଵݐ + 2݇ − ௨݌ ≥ ݍ + ݇; that is, ݌௨ ≤ ߩ) − ݍ(1 + 1)ݍଵߜ − (ఋଵݐ + ݇ (G1). To ensure

that the OG users prefer Upgrade rather than SaaS, even if SaaS is priced at 0, we need ݍߩ + 1)ݍଵߜ − (ఋଵݐ + 2݇ − ௨݌ ≥ ଵ଴׬ ݍߠ) + ݐߙ ௨݌ ,that is ;ݐ݀(݇+ ≤ ߩ) − ݍ(ߠ + 1)ݍଵߜ − (ఋଵݐ + ݇ − ఈଶ (G2). To ensure that the NG users prefer New rather than SaaS, even if SaaS is priced

at 0, we must have ݍߩ + 1)ݍଵߜ − (ఋଵݐ + 2݇ − ௡݌ ≥ ଵ଴׬ ݍߠ) + ݐߙ + ௡݌ ,that is ;ݐ݀(݇ ≤ ߩ) − ݍ(ߠ + 1)ݍଵߜ − (ఋଵݐ + ݇ − ఈଶ (G3). Therefore,

the optimal price is ݌௨ௌ௉ଵ = ௡ௌ௉ଵ݌ = ߩ) − ݍ(ߠ + 1)ݍଵߜ − (ఋଵݐ + ݇ − ఈଶ. The optimal profit is ߨ௣௘௥௣ௌ௉ଵ = ߩ)2 − ݍ(ߠ + 1)ݍଵߜ2 − (ఋଵݐ + 2݇ .ߙ−

Next, consider SP2 (Upgrade, SaaS). To ensure that the OG users prefer Upgrade rather than Old, we need ݍߩ + 1)ݍଵߜ − (ఋଵݐ + ݇ − ௨݌ ݍ≤ + ݇; that is, ݌௨ ≤ ߩ) − ݍ(1 + 1)ݍଵߜ − ݍߩ ఋଵ) (G4). To ensure that the OG users prefer Upgrade rather than SaaS, we needݐ + 1)ݍଵߜ (ఋଵݐ− + ݇ − ௨݌ ≥ ଵ଴׬ ݍߠ) + ݐߙ + 2݇ − ௨݌ ,that is ;ݐ݀(௦݌ ≤ ௦݌ + ߩ) − ݍ(ߠ + 1)ݍଵߜ − (ఋଵݐ − ݇ − ఈଶ (G5). To ensure that the NG users prefer

SaaS rather than New, we must have ׬ଵ଴ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ ≥ ݍߩ + 1)ݍଵߜ − (ఋଵݐ + 2݇ − ௡݌ ,௡; that is݌ ≥ ௦݌ + ߩ) − ݍ(ߠ + 1)ݍଵߜ (ఋଵݐ− + ݇ − ఈଶ (G6). To ensure that OG users prefers Upgrade rather than SaaS, we need to make sure that at ݐ = 1 the net benefit of switching

to SaaS cannot exceed that of Upgrade: ݍߠ + ߙ + 2݇ − ௦݌ ≤ ߩ) + ݍ(ଵߜ + ݇; that is, ݌௦ ≥ ߙ + ݇ − ߩ) + ଵߜ − Therefore, the .(G7) ݍ(ߠ
optimal price is ݌௨ௌ௉ଶ = ߩ) − ݍ(1 + 1)ݍଵߜ − ௣௘௥௣ௌ௉ଶߨ ఋଵ), and the optimal profit isݐ = ߩ) − ݍ(1 + 1)ݍଵߜ − ௦ௌ௉ଶ݌ ఋଵ). The SaaS price isݐ ߠ)= − ݍ(1 − 1)ݍଵߜ − (ఋଵݐ + ݇ + ఈଶ if ߙ ≤ ߩ)2 − ݍ(1 − ௦ௌ௉ଶ݌ ,ఋଵ; otherwiseݐݍଵߜ = ߙ + ݇ − ߩ) + ଵߜ − .ݍ(ߠ

Comparing the perpetual software vendor’s profits under SP1 and SP2, we see that ߨ௣௘௥௣ௌ௉ଵ > ௣௘௥௣ௌ௉ଶߨ if ݇ > ଵᇱܭ ଵᇱ, whereܭ = ఈି(ఘିଶఏାଵ)௤ଶ −ఋభ௤(ଵି௧ഃభ)ଶ < ᇱߙ ଵ. Consequently, the lower bound valueܭ = ߩ) − ߠ2 + ݍ(1 + 1)ݍଵߜ − (ఋଵݐ > are critical values in the ߙ ଵ andܭ Both .ߙ

baseline model when the perpetual software vendor does not provide a quality jump. Hence, the ܭଵᇱ line shifts downward and the lower bound ߙᇱ shifts towards right.

Finally, consider SP6 (Upgrade+SaaS, New+SaaS). The switching time is determined by ݍߠ + ூொݐߙ + 2݇ − ௦݌ = ߩ) + ݍ(ଵߜ + 2݇; that is, ݐூொ = ௣ೞା(ఘାఋభିఏ)௤ఈ > ௦݌௦ଷ. The SaaS vendor’s profit is expressed as 2ݐ ቀ1 − ௣ೞା(ఘାఋభିఏ)௤ఈ ቁ. Under the condition ߙ ≥ ߩ) + ଵߜ − solving ,ݍ(ߠ

this optimization problem yields the optimal SaaS price ݌௦ௌ௉଺ = ఈି(ఘାఋభିఏ)௤ଶ , which is lower than the optimal SaaS price under the baseline

case.

To ensure that NG users prefer New+SaaS rather than SaaS, we need (ݍߩ + ௦ସݐ(2݇ + ௦ସݐ)ݍଵߜ − (ఋଵݐ − ௡݌ + ଵ௧ೞర׬ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦݌ ௧ೞర଴׬≤ ݍߠ) + ௦ݐߙ + ݇ − ݐ݀(௦݌ + ଵ௧ೞర׬ ݍߠ) + ݐߙ + 2݇ − ௡݌ Simplifying this inequality we have .ݐ݀(௦݌ ≤ [ఈା(ఘାఋభିఏ)௤][ସ௞ାఈା(ఘାఋభିఏ)௤]଼ఈ ఋଵ (G8). Furthermore, we need to ensure that OG users prefer Upgrade+SaaS rather than Old+SaaS. The switching time for Old+SaaSݐݍଵߜ−

is ݐ௦ଵ = ௣ೞೄುలି(ఏିଵ)௤ఈ = ఈି(ఘାఋభାఏିଶ)௤ଶఈ . If ߙ > ߩ) + ଵߜ + ߠ − ݍߩ) then the incentive compatibility condition is ,ݍ(2 + ௦ସݐ(2݇ + ௦ସݐ)ݍଵߜ (ఋଵݐ− − ௨݌ + ଵ௧ೞర׬ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦݌ ≥ ݍ) + ௦ଵݐ(݇ + ௧ೞర௧ೞభ׬ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ + ଵ௧ೞర׬ ݍߠ) + ݐߙ + 2݇ − Simplifying this .ݐ݀(௦݌

inequality, we have: ݌௨ ≤ ௞ఈି(஡ାఋభିଵ)(ఏିଵ)௤మା[ఈ(ఘାఋభିଵ)ା௞(ఘାఋభିఏ)]௤ଶఈ − ߙ ఋଵ (G9). Ifݐݍଵߜ ≤ ߩ) + ଵߜ + ߠ − we need to ensure that OG ,ݍ(2

users prefer Upgrade+SaaS rather than SaaS. Hence, (ݍߩ + ௦ସݐ(2݇ + ௦ସݐ)ݍଵߜ − (ఋଵݐ − ௨݌ + ଵ௧ೞర׬ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦݌ ≥ ௧ೞర଴׬ ݍߠ) ݐߙ+ + ݇ − ݐ݀(௦݌ + ଵ௧ೞర׬ ݍߠ) + ݐߙ + 2݇ − ௨݌ which leads to ,ݐ݀(௦݌ ≤ [ఈା(ఘାఋభିఏ)௤][ସ௞ାఈା(ఘାఋభିఏ)௤]଼ఈ − ௨ௌ௉଺݌ ,ఋଵ (G10). Thereforeݐݍଵߜ =௞ఈି(ఘାఋభିଵ)(ఏିଵ)௤మା[ఈ(ఘାఋభିଵ)ା௞(ఘାఋభିఏ)]௤ଶఈ − ௡ௌ௉଺݌ ఋଵ andݐݍଵߜ = [ఈା(ఘାఋభିఏ)௤][ସ௞ାఈା(ఘାఋభିఏ)௤]଼ఈ − ߙ ఋଵ ifݐݍଵߜ > ߩ) + ଵߜ + ߠ − ௨ௌ௉଺݌ and ;ݍ(2 = ௡ௌ௉଺݌ = [ఈା(ఘାఋభିఏ)௤][ସ௞ାఈା(ఘାఋభିఏ)௤]଼ఈ − ߙ ఋଵ ifݐݍଵߜ ≤ ߩ) + ଵߜ + ߠ − .ݍ(2

Next, we compare the perpetual software vendor’s profits under SP2 and SP6. We find that, compared to the ܭଶ curve in the baseline model,

the new ܭଶᇱ curve shifts downward. Specifically, if we redefine ߩᇱ = ߩ + ଶᇱܭ ଵ, we can writeߜ = ఈ(ఘᇲିଵ)௤ఈା(ఘᇲିఏ)௤ − ఈା(ఘᇲିఏ)௤ସ + ߙ ఋଵ ifݐݍଵߜ ≤ ᇱߩ) +

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A11

ߠ − ଶᇱܭ and ݍ(2 = ଼ఈ(ఘᇲିଵ)௤ା[ఈି(ఘᇲାఏିଶ)௤]మ଼[ఈା(ఘᇲିఏ)௤] − ఈା(ఘᇲିఏ)௤ସ + ߙ ఋଵ ifݐݍଵߜ > ᇱߩ) + ߠ − ଶᇱ curve shifts towards theܭ ଶ, theܭ Compared with .ݍ(2

right. The upper bound ߙௌଵᇱ is given by ܭଶᇱ = 0.

S2 (ࢾ૛, ૛): Patching After the SaaS Exceeds the Perpetual Software Qualityࢾ࢚

First, consider SP1 (Upgrade, New). The analysis is the same as above. We obtain the same three conditions (G1), (G2), and (G3). So, the
solution is also the same: the optimal price is ݌௨ௌ௉ଵ = ௡ௌ௉ଵ݌ = ߩ) − ݍ(ߠ + 1)ݍଶߜ − (ఋଶݐ + ݇ − ఈଶ, and the optimal profit is ߨ௣௘௥௣ௌ௉ଵ = ߩ)2 ݍ(ߠ− + 1)ݍଶߜ2 − (ఋଶݐ + 2݇ − .ߙ

Next, consider SP2 (Upgrade, SaaS). Following the same analysis, we get the same conditions (G4), (G5), and (G6). In addition, we need to
ensure that OG users prefer Upgrade rather than Upgrade+SaaS. If OG users chooses to switch from the upgraded perpetual software to SaaS,

it must be at ݐ∗ = (ఘିఏ)௤ା௣ೞି௞ఈ . Note that at ݐ∗, the perpetual vendor has not patched its product yet. To ensure that OG users stay with the

perpetual software, their expected value from not switching, after considering the future quality improvement ߜଶݍ at ݐఋଶ should be higher

than the expected value from switching to SaaS: ׬௧ഃమ௧∗ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦݌ − ݍߩ) + ఋଶݐ)(݇ − (∗ݐ ≤ ݍߩ) + ݍଶߜ + ݇)(1 − (ఋଶݐ ଵ௧ഃ׬− ݍߠ) + ݐߙ + 2݇ − ௦݌ Simplifying and solving this inequality yields .ݐ݀(௦݌ ≥ ߙ + ݇ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ,ఋଶ) (G11). Using (G4)ݐ

we get the optimal upgrade price ݌௨ௌ௉ଶ = ߩ) − ݍ(1 + 1)ݍଶߜ − ௦݌ ௨ௌ௉ଶ into (G5), we get݌ ఋଶ). Substitutingݐ ≥ ߠ) − ݍ(1 + ݇ + ఈଶ. Now we

compare this lower bound of ݌௦ with the condition (G11): Define ߂ ≐ ߠ) − ݍ(1 + ݇ + ఈଶ − ൛ߙ + ݇ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ߙ ఋଶ)ൟ. Whenݐ < 1)ݍଶߜ2 − ߂ ,(ఋଶݐ > 0. When ߙ ≥ 1)ݍଶߜ2 − ఈୀଶఋమ௤(ଵି௧ഃమ)߂ ,(ఋଶݐ > 0 and
ப௱பఈ < 0. So if ߙ exceeds a certain threshold value, ߂ < 0. At

the largest possible value of ߙ௠௔௫ = ߩ) + ଶߜ − ఈୀ(ఘାఋమିఏ)௤߂ we find that ,ݍ(ߠ > 0. Therefore, we always have ߂ > 0. Consequently, the

optimal SaaS price is ݌௦ௌ௉ଶ = ߠ) − ݍ(1 + ݇ + ఈଶ, at which the non-switching condition (G11) is always satisfied. The perpetual software

prices are ݌௨ௌ௉ଶ = ௡ௌ௉ଶ݌ = ߩ) − ݍ(1 + 1)ݍଶߜ − ௣௘௥௣ௌ௉ଶߨ ఋଶ), and the profit isݐ = ߩ) − ݍ(1 + 1)ݍଶߜ − .(ఋଶݐ

Next, we compare the perpetual software vendor’s profits under SP1 and SP2: ߨ௣௘௥௣ௌ௉ଵ > ௣௘௥௣ௌ௉ଶߨ if ݇ > ଵᇱܭ ଵᇱ, whereܭ = ఈି(ఘିଶఏାଵ)௤ଶ −ఋమ௤(ଵି௧ഃమ)ଶ . Note that both the ܭଵᇱ line and lower bound value ߙᇱ are as same as in the above Patching Strategy S1.

Finally, consider SP6 (Upgrade+SaaS, New+SaaS). The switching time is determined by ݍߠ + ∗ݐߙ + 2݇ − ௦݌ = ݍߩ + 2݇; that is, ݐ∗ =௣ೞା(ఘିఏ)௤ఈ . The SaaS vendor’s profit is expressed as 2݌௦ ቀ1 − ௣ೞା(ఘିఏ)௤ఈ ቁ. It yields the optimal SaaS price ݌௦∗ = ఈି(ఘିఏ)௤ଶ , which is the same

as the optimal SaaS price in the baseline model. For SP6 to be an equilibrium, we need to ensure switching does happen. That is, at ݐ∗, it
must be ׬௧ഃమ௧∗ ݍߠ) + ݐߙ − ݐ݀(௦݌ − ఋଶݐ)ݍߩ − (∗ݐ ≥ ݍߩ) + 1)(ݍଶߜ − (ఋଶݐ − ଵ௧ഃమ׬ ݍߠ) + ݐߙ − Simplifying and solving this inequality .ݐ݀(௦݌

yields ݌௦ ≤ ߙ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ∗௦݌ ఋଶ) (G12). Now we check whether the SaaS priceݐ = ఈି(ఘିఏ)௤ଶ from the above optimization

problem satisfies (G12). We can show that if ߜଶ1)ݍ − (ఋଶݐ ≤ [ఈି(ఘିఏ)௤]మ଼ఈ ௦ௌ௉଺݌ ௦∗ satisfies (G12) and so݌ , = ఈି(ఘିఏ)௤ଶ ∗ݐ , = ఈା(ఘିఏ)௤ଶఈ ;

otherwise, ݌௦∗ does not satisfy (G12), and so ݌௦ௌ௉଺ = ߙ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ∗ݐ ,(ఋଶݐ = ఈିඥଶఈఋమ௤(ଵି௧ഃమ)ఈ .

We need to ensure that NG users prefer New+SaaS rather than SaaS. That is, (ݍߩ + ∗ݐ(2݇ − ௡݌ + ∗ଵ௧׬ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦݌ ≥ ௧∗଴׬ ݍߠ) ݐߙ+ + ݇ − ݐ݀(௦݌ + ∗ଵ௧׬ ݍߠ) + ௦ݐߙ + 2݇ − 1)ݍଶߜ When .ݐ݀(௦݌ − (ఋଶݐ ≤ [ఈି(ఘିఏ)௤]మ଼ఈ , the condition leads to ݌௡ ≤ [ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]଼ఈ

(G13); otherwise, ݌௡ ≤ [ఈିඥଶఈఋమ௤(ଵି௧ഃమ)][ଶ௞ାఈିඥଶఈఋమ௤(ଵି௧ഃమ)]ଶఈ (G14).

We also need to ensure that OG users prefer Upgrade+SaaS rather than Old+SaaS. The switching time in Old+SaaS is ݐ௦ଵ = ௣ೞೄುలି(ఏିଵ)௤ఈ .

According to different values of ߜଶ1)ݍ − .ఋଶ), we analyze the following two casesݐ

Case (a) When ߜଶ1)ݍ − (ఋଶݐ ≤ [ఈି(ఘିఏ)௤]మ଼ఈ ௦ଵݐ , = ఈି(ఘାఏିଶ)௤ଶఈ . If ߙ > ߩ) + ߠ − ௦ଵݐ ,ݍ(2 > 0, and the incentive compatibility condition is (ݍߩ + ∗ݐ(2݇ − ௨݌ + ∗ଵ௧׬ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦݌ ≥ ݍ) + ௦ଵݐ(݇ + ௧∗௧ೞభ׬ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ + ∗ଵ௧׬ ݍߠ) + ݐߙ + 2݇ − Simplifying it .ݐ݀(௦݌

we have ݌௨ ≤ ௞ఈି(ఘିଵ)(ఏିଵ)௤మା[ఈ(ఘିଵ)ା௞(ఘିఏ)]௤ଶఈ (G15). Hence, the optimal perpetual software prices are given by (G13) and (G15). If ߙ ߩ)> + ߠ − ௦ଵݐ ,ݍ(2 < 0, so the incentive compatibility condition is to ensure that OG users prefer Upgrade+SaaS rather than SaaS: (ݍߩ +

Guo & Ma/Perpetual Software and Software as a Service

A12 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

∗ݐ(2݇ − ௨݌ + ∗ଵ௧׬ ݍߠ) + ݐߙ + 2݇ − ݐ݀(௦݌ ≥ ௧∗଴׬ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ + ∗ଵ௧׬ ݍߠ) + ݐߙ + 2݇ − ௨݌ which leads to ,ݐ݀(௦݌ ≤[ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]଼ఈ (G16). Hence, the optimal perpetual software prices are given by (G13) and (G16).

Case (b) When ߜଶ1)ݍ − (ఋଶݐ > [ఈି(ఘିఏ)௤]మ଼ఈ ௦ଵݐ , = ఈି(ఘିଵ)௤ିඥଶఈఋమ௤(ଵି௧ഃమ)ఈ . If ߜଶ1)ݍ − (ఋଶݐ < [ఈି(ఘିଵ)௤]మଶఈ ௦ଵݐ , > 0, and the incentive

compatibility condition is to ensure that OG users prefer Upgrade+SaaS other than Old+SaaS. Then we have ݌௨ ≤ ߩ)] − ݍ(1 +݇] ఈିඥଶఋమ௤(ଵି௧ഃమ)ఈ − (ఘିଵ)మ௤మଶఈ (G17). Hence, the optimal perpetual software prices are given by (G14) and (G17). If ߜଶ1)ݍ − (ఋଶݐ >[ఈି(ఘିଵ)௤]మଶఈ ௦ଵݐ , < 0, so the incentive compatibility condition is to ensure that OG users prefer Upgrade+SaaS rather than SaaS. Similarly, we

get ݌௨ ≤ [ఈିඥଶఈఋమ௤(ଵି௧ഃమ)][ଶ௞ାఈିඥଶఈఋమ௤(ଵି௧ഃమ)]ଶఈ (G18). Hence, the optimal perpetual software prices are given by (G14) and (G18).

Note that
[ఈି(ఘିఏ)௤]మ଼ఈ > [ఈି(ఘିଵ)௤]మଶఈ when ߙ < ߩ) + ߠ − and ,ݍ(2

[ఈି(ఘିఏ)௤]మ଼ఈ < [ఈି(ఘିଵ)௤]మଶఈ when ߙ > ߩ) + ߠ − As a result, the optimal .ݍ(2

prices and vendor profits in SP6 can be summarized in the following, depending on both ߜଶ1)ݍ − ݒ Define .ߙ ఋଶ) andݐ =݉݅݊ ቄ[ఈି(ఘିఏ)௤]మ଼ఈ , [ఈି(ఘିଵ)௤]మଶఈ ቅ and ݒ = ݔܽ݉ ቄ[ఈି(ఘିఏ)௤]మ଼ఈ , [ఈି(ఘିଵ)௤]మଶఈ ቅ. We have three cases:

(i) ߜଶ1)ݍ − (ఋଶݐ < ߙ if :ݒ < ߩ) + ߠ − ௦ௌ௉଺݌ ,ݍ(2 = ఈି(ఘିఏ)௤ଶ ௨ௌ௉଺݌ , = ௡ௌ௉ల݌ = [ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]଼ఈ ௌ௔௔ௌௌ௉଺ߨ , = [ఈି(ఘିఏ)௤]మଶఈ , and ߨ௣௘௥௣ௌ௉଺ =[ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]ସఈ ; if ߙ > ߩ) + ߠ − ௦ௌ௉଺݌ ,ݍ(2 = ఈି(ఘିఏ)௤ଶ ௡ௌ௉଺݌ , = [ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]଼ఈ ௨ௌ௉ల݌ , = ௞ఈି(ఘିଵ)(ఏିଵ)௤మା[ఈ(ఘିଵ)ା௞(ఘିఏ)]௤ଶఈ ௌ௔௔ௌௌ௉଺ߨ , = [ఈି(ఘିఏ)௤]మଶఈ , and ߨ௣௘௥௣ௌ௉଺ = ଶ[ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]ି[ఈି(ఘାఏିଶ)௤]మ଼ఈ .

(ii) ݒ < 1)ݍଶߜ − (ఋଶݐ < ߙ if :ݒ < ߩ) + ߠ − ௦ௌ௉଺݌ ,ݍ(2 = ఈି(ఘିఏ)௤ଶ ௨ௌ௉଺݌ , = ௡ௌ௉ల݌ = [ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]଼ఈ ௌ௔௔ௌௌ௉଺ߨ , = [ఈି(ఘିఏ)௤]మଶఈ ௣௘௥௣ௌ௉଺ߨ , =[ఈା(ఘିఏ)௤][ସ௞ାఈା(ఘିఏ)௤]ସఈ ; if ߙ > ߩ) + ߠ − ௦ௌ௉଺݌ ,ݍ(2 = ߙ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ௡ௌ௉଺݌ ,(ఋଶݐ = [ఈିඥଶఈఋమ௤(ଵି௧ഃమ)][ଶ௞ାఈିඥଶఈఋమ௤(ଵି௧ഃమ)]ଶఈ ௨ௌ௉଺݌ , = ߩ)] − ݍ(1 + ݇] ఈିඥଶఋమ௤(ଵି௧ഃమ)ఈ − (ఘିଵ)మ௤మଶఈ ௌ௔௔ௌௌ௉଺ߨ , = ଶඥଶఈఋమ௤(ଵି௧ഃమ)[ఈି(ఘିఏ)௤ିඥଶఈఋమ௤(ଵି௧ഃమ)]మఈ ௣௘௥௣ௌ௉଺ߨ , =ൣఈିඥଶఈఋమ௤(ଵି௧ഃమ)൧మାଶ[(ఘିଵ)௤ାଶ௞](ఈିඥଶఈఋమ௤(ଵି௧ഃమ)ି[(ఘିଵ)௤]మଶఈ .

(iii) ߜଶ1)ݍ − (ఋଶݐ > ௡ௌ௉଺݌ :ݒ = ௨ௌ௉଺݌ = [ఈିඥଶఈఋమ௤(ଵି௧ഃమ)][ଶ௞ାఈିඥଶఈఋమ௤(ଵି௧ഃమ)]ଶఈ ௦ௌ௉଺݌ , = ߙ − ߩ) − ݍ(ߠ − ඥ2ߜߙଶ1)ݍ − ௌ௔௔ௌௌ௉଺ߨ ,(ఋଶݐ =ଶඥଶఈఋమ௤(ଵି௧ഃమ)[ఈି(ఘିఏ)௤ିඥଶఈఋమ௤(ଵି௧ഃమ)]మఈ , and ߨ௣௘௥௣ௌ௉଺ = [ఈିඥଶఈఋమ௤(ଵି௧ഃమ)][ଶ௞ାఈିඥଶఈఋమ௤(ଵି௧ഃమ)]ఈ .

Finally, we compare the perpetual software vendor’s profits under SP2 and SP6. The comparison should be done in each region of ߜଶ1)ݍ 1)ݍଶߜ ఋଶ). In (i), whenݐ− − ௣௘௥௣ௌ௉଺ߨ ,ఋଶ) is small, the perpetual vendor's profit in SP6ݐ , is the same as in the baseline model. Hence, the ܭଶᇱ ଶܭ= + ఈఈା(ఘିఏ)௤ 1)ݍଶߜ − ఋଶ) curve that divides the market segmentation equilibrium (SP2) and the sequential dominance equilibrium (SP6)ݐ

shifts upward and toward the right, compared to the ܭଶ curve in the baseline model. Similarly, in (ii), we have ܭଶᇱ = ఈ(ఘିଵ)௤ఈା(ఘିఏ)௤ − ఈା(ఘିఏ)௤ସ +ఈఈା(ఘିఏ)௤ 1)ݍଶߜ − ߙ ఋଶ) ifݐ < ߩ) + ߠ − ଶᇱܭ and ݍ(2 = ఈ[(ఘିଵ)௤ାఋమ௤(ଵି௧ഃమ)]ଶ[ఈିඥଶఈఋమ௤(ଵି௧ഃమ)] + [(ఘିଵ)௤]మିൣఈିඥଶఈఋమ௤(ଵି௧ഃమ)൧మସൣఈିඥଶఈఋమ௤(ଵି௧ഃమ)൧ − (ఘିଵ)௤ଶ if ߙ ≥ ߩ) + ߠ − In .ݍ(2

(iii), we have ܭଶᇱ = ఈ[(ఘିଵ)௤ାఋమ௤(ଵି௧ഃమ)]ଶ[ఈିඥଶఈఋమ௤(ଵି௧ഃమ)] − ൣఈିඥଶఈఋమ௤(ଵି௧ഃమ)൧ଶ . Under the three cases, the upper bound ߙௌଶ(௜)ᇱ ௌଶ(௜௜)ᇱߙ , and ߙௌଶ(௜௜௜)ᇱ are given by

solving ܭଶᇱ = 0. Furthermore, ߙௌଶ(௜௜௜)ᇱ > ௌଶ(௜௜)ᇱߙ > ௌଶ(௜)ᇱߙ , and ߙௌଶ(௜)ᇱ > .ߙ

To conclude, in each case, there are no qualitative changes in the competition outcomes, except that the equilibrium regions are shifted.

Proof of Proposition 6 (Optimal Patching Strategy and Time)

We show the proof based on a special case ݇ = 0. The reasoning for the general case is similar. We omit the proof because the mathematical
expressions are quite lengthy.

Define ߙଵ = ௌଵᇱߙ and ߙଶ = ௌଶ(௜)ᇱߙ where ߙௌଵᇱ and ߙௌଶ(௜)ᇱ are the upper bound in S1 and S2, respectively. When ߙ < ଵ, the equilibrium underߙ
S1 and S2 is the same (either entry deterrence or market segmentation). The perpetual software vendor’s profit functions are also the same.
Since its profit is linearly increasing in the patching value, the optimal patching time is determined by solving the largest patching value: ݐఋ∗ = ௧ഃ∈(଴,ଵ)∀ݔܽ݉݃ݎܣ ሼ1)ݍߜ − .∗ݐ ఋ)ሽ. It can be either before or afterݐ

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A13

When ߙଵ < ߙ < ଶ, for any patching value, the equilibrium under S1 is sequential dominance and under S2 is market segmentation. Nextߙ

we compare the two equilibrium profits for the perpetual software vendor. Define ݒଵ ≡ [ఈି(ఘାఋభିఏ)௤]మ଼ఈ + (ఘାఋభିଵ)[ఈି(ఏିଵ)]௤మଶఈ − ߩ) − ݍ(1 ఋଵ. If ௌܸଶݐݍଵߜ2− > ௣௘௥௣ௌ௉ଶߨ ଵ, S2 offers a higher profit than S1. The vendor’s profitݒ under S2 is linearly increasing in its patching value. The
optimal patching time is given by ݐఋଶ∗ = ௧ഃ∈(௧∗,ଵ)∀ݔܽ݉݃ݎܣ ሼ1)ݍߜ − If ௌܸଶ .∗ݐ ఋ)ሽ. So the optimal patching time should be later thanݐ < ଵ, S1 offersݒ

a higher profit than S2, and the optimal patching time should be earlier than ݐ∗. The optimal patching time is determined by solving the profit

maximization problem under ߨ௣௘௥௣ௌ௉଺ ௧ഃ∈(଴,௧∗)ݔܽܯ : ቄ[ఈା(ఘାఋ௧ഃିఏ)௤]మ଼ఈ + (ఘାఋ௧ഃିଵ)௤[ఈି(ఏିଵ)௤]ଶఈ − .ఋቅݐݍߜ2

When ߙ > ଶ, the equilibrium under S1 is sequential dominance. Consider two possibilities. (1) If ௌܸଶߙ < the equilibrium under S2 is ,ݒ
sequential dominance as in the aforementioned case (i). The perpetual software vendor’s profit ߨ௣௘௥௣ௌ௉଺ under S2 is the same as in the baseline
model. It does not depend on the patching value ௌܸଶ at all. So it is always smaller than the profit ߨ௣௘௥௣ௌ௉଺ under S1. The vendor therefore should

prefer S1, and its optimal patching time should be earlier than ݐ∗ and it maximizes ߨ௣௘௥௣ௌ௉଺ under S1: ݔܽܯ௧ഃ∈(଴,௧∗) ቄ[ఈା(ఘାఋ௧ഃିఏ)௤]మ଼ఈ +(ఘାఋ௧ഃିଵ)௤[ఈି(ఏିଵ)௤]ଶఈ − ఋቅ. (2) If ௌܸଶݐݍߜ2 > ௌଶ(௜௜௜)ᇱߙ ,under S2, we are in cases (ii) and (iii). However ,ݒ > ௌଶ(௜௜)ᇱߙ > ߩ) + ଶߜ − The .ݍ(ߠ

resulting equilibrium is market segmentation. Hence, we compare ߨ௣௘௥௣ௌ௉଺ under S1 and ߨ௣௘௥௣ௌ௉ଶ under S2. The analysis and results are the same
as those in ߙଵ < ߙ < ଶ: If ௌܸଶߙ < ∗ݐ otherwise, the optimal patching time should be after ;∗ݐ ଵ, the optimal patching time should be beforeݒ

Define ݒଶ ≡ ,ଵݒ)ݔܽ݉ .and ௌܸଶ, we complete the proof of Proposition 6 ߙ By combining the above analyses in all regions of .(ݒ

Appendix H

Perpetual Software Vendor's Major Quality Improvement (Two-Period Model)

When ߙ ≤ ߩ) − the SaaS quality improvement rate is small such that the perpetual software always has the quality advantage in both ,ݍ(ߠ
periods. In this case, the perpetual software vendor can deter SaaS entry. The corresponding equilibrium strategy pair is SP1′[(Upgrade1,
Upgrade2), (New1, Upgrade2)].

When ߙ > ߩ) − ߩ) the SaaS entry cannot be deterred. There are two cases. If ,ݍ(ߠ − ݍ(ߠ < ߙ ≤ ߩ) − the single-period quality ,ݍ(1
improvement of SaaS is smaller than that of the perpetual software. Because the SaaS has relative quality advantage in the first period but
not in the second period, the possible equilibrium strategies are either SP3′[(Upgrade1+SaaS, Upgrade2+SaaS), (New1+SaaS,
Upgrade2+SaaS)] or SP3′′[(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)].

If (ߩ − ݍ(1 < ߙ ≤ ߩ2) − ߠ − the single-period quality improvement of SaaS is larger than that of the perpetual software. Because the ,(ݍ(1
SaaS has relative quality advantage in the second period but not in the first period, the possible strategies are either SP3′[(Upgrade1+SaaS,
Upgrade2+SaaS), (New1+SaaS, Upgrade2+SaaS)] or SP3′′′[(Upgrade1, Upgrade2+SaaS), (New1, Upgrade2+SaaS)].

Furthermore, because the perpetual software has quality advantage at the beginning of each period, and it has OG users as the established
customer base, the perpetual software vendor might consider the market segmentation strategy to give up the NG users in both periods or
only in one period. The possible equilibrium strategies are SP2′[(Upgrade1, Upgrade2), (SaaS, SaaS)] for all ߙ, SP2′′[(Upgrade1, Upgrade2),
(SaaS, New2)] if (ߩ − ݍ(ߠ < ߙ ≤ ߩ) − ߩ) Note that if .ݍ(1 − ݍ(1 < ߙ ≤ ߩ2) − ߠ − SP2′′′[(Upgrade1, Upgrade2), (New1, SaaS)] ,(ݍ(1
cannot emerge as equilibrium because after OG users upgrade and NG users adopt the new perpetual software, their actions should be the
same.

Entry Deterrence Strategy

Consider SP1′[(Upgrade1, Upgrade2), (New1, Upgrade2)]. Because the SaaS vendor can reduce price to zero, to prevent users from switching
to SaaS at anytime between [0,2], we need ݍߠ + ߙ ≤ ߙ ,that is ;ݍߩ ≤ ߩ) − .ݍ(ߠ

Given that the NG users adopt the perpetual software in both periods, to ensure that the OG users prefer upgrading in both periods rather than
just in the first period, we have ݍߩ + 2݇ + ߩ2) − ݍ(1 + 2݇ − ௨݌2 ≥ ݍߩ + 2݇ + ݍߩ + ݇ − ௨݌ ,௨; that is݌ ≤ ߩ) − ݍ(1 + ݇ (H1). Similarly,
given that the OG users choose to upgrade in both periods, to ensure that the NG users prefer to buy new perpetual software and upgrade in
period 2 rather than not upgrading, their total utility must be ݍߩ + 2݇ + ߩ2) − ݍ(1 + 2݇ − ௡݌ − ௨݌ ≥ ݍߩ + 2݇ + ݍߩ + ݇ − ௡, which is the݌
same as (H1).

Guo & Ma/Perpetual Software and Software as a Service

A14 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

To ensure that OG users prefer upgrading in both periods rather than adopting SaaS in any period, even if the SaaS price is reduced to zero,

the entry deterrence condition is (ݍߩ + 2݇) + ߩ2) − ݍ(1 + 2݇ − ௨݌2 ≥ ଶ଴׬]ݔܽ݉ ݍߠ) + ݐߙ + ,ݐ݀(݇ ଵ଴׬ ݍߠ) + ݐߙ + ݐ݀(݇ + ߩ2) − ݍ(1 +2݇ − ,௨݌ ଶଵ׬ ݍߠ) + ݐߙ + ݐ݀(݇ + ݍߩ + 2݇ − ,௨]. In addition, to ensure that the NG users prefer (New1, Upgrade2) to the SaaS in any period݌

even if the SaaS price is zero, their total utility must be ݍߩ + 2݇ + ߩ2) − ݍ(1 + 2݇ − ௡݌ − ௨݌ ≥ ଶ଴׬]ݔܽ݉ ݍߠ) + ݐߙ + ,ݐ݀(݇ ଵ଴׬ ݍߠ) + ݐߙ ݐ݀(݇+ + ߩ2) − ݍ(1 + 2݇ − ,௡݌ ଶଵ׬ ݍߠ) + ݐߙ + ݐ݀(݇ + ݍߩ + 2݇ − ௨݌ ௡]. Solving these inequalities, we have݌ ≤ ߩ) − ݍ(ߠ + ݇ − ఈଶ (H2) and ݌௡ + ௨݌ ≤ ߩ3) − ߠ2 − ݍ(1 + 2݇ − .(H3) ߙ2

Comparing (H1) and (H2) we see (H1) is not binding. So by (H2) the perpetual software vendor sets the upgrade price at the upper bound ݌௨ = ߩ) − ݍ(ߠ + ݇ − ఈଶ, and by (H3) ݌௡ = ߩ2) − ߠ − ݍ(1 + ݇ − ଷఈଶ . We can verify that ݌௨ < ௡. Consequently, the perpetual software݌

vendor' s profit is ߨ௣௘௥௣ௌ௉ଵᇱ = ௨݌3 + ௡݌ = ߩ5) − ߠ4 − ݍ(1 + 4݇ − .and the SaaS vendor is out of the market ,ߙ3

Market Segmentation Strategy

Case (1) Consider SP2′[(Upgrade1, Upgrade2), (SaaS, SaaS)]. To prevent the OG users from switching to SaaS, the SaaS payoff at the end
of each period should not be higher than payoff from the new perpetual software for OG users. Thus, we have ݍߠ + ߙ + 2݇ − ௦݌ ≤ ݍߩ + ݇,
and ݍߠ + ߙ2 + 2݇ − ௦݌ ≤ ߩ2) − ݍ(1 + ݇ . Hence, if ߙ ≤ ߩ) − ௦݌ ,ݍ(1 ≥ ߙ + ݇ − ߩ) − ߙ and if ;(H4) ݍ(ߠ > ߩ) − ௦݌ ,ݍ(1 ≥ ߙ2 + ݇ ߩ2)− − ߠ − .(H5) ݍ(1

Given that the NG users adopt SaaS in both periods, to ensure that the OG users prefer to upgrade in both periods rather than opt for SaaS,

their total utility must be ݍߩ + ݇ + ߩ2) − ݍ(1 + ݇ − ௨݌2 ≥ ଶ଴׬ ݍߠ) + ݐߙ + 2݇ − ௨݌ and thus ݐ݀(௦݌ ≤ ௦݌ + (ଷఘିଶఏିଵ)௤ଶ − ݇ − To .(H6) ߙ

ensure the OG users to upgrade in both periods rather than just in one period, we must have ݍߩ + ݇ + ߩ2) − ݍ(1 + ݇ − ௨݌2 ≥ ݍߩ)2]ݔܽ݉ +݇) − ,௨݌ ݍ + ݇ + ߩ2) − ݍ(1 + ݇ − ௨݌ ,௨]; that is݌ ≤ ߩ) − .(H7) ݍ(1

Similarly, given that the OG users upgrade in both periods, to ensure that the NG users prefer (SaaS, SaaS) rather than (SaaS, New2), we

must have ׬ଶ଴ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ ≥ ଵ଴׬ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ + ߩ2) − ݍ(1 + 2݇ − ௡݌ ௡; which is݌ ≥ ௦݌ + ߩ2) − ߠ − ݍ(1 + ݇ − ଷఈଶ

(H8). To ensure that the NG users prefer (SaaS, SaaS) rather than (New1, Upgrade2), we must have ׬ଶ଴ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ ≥ ݍߩ + 2݇ ߩ2)+ − ݍ(1 + 2݇ − ௡݌ − ௡݌ ,௨; that is݌ + ௨݌ ≥ ௦݌2 + ߩ3) − ߠ2 − ݍ(1 + 2݇ − .(H9) ߙ2

If ߙ ≤ ߩ) − ௨݌ to maximize its profit, the perpetual software vendor charges ,ݍ(1 = ߩ) − ௡ high enough such that the SaaS݌ and sets ݍ(1

vendor can charge a high enough price ݌௦, so that the OG users would not opt for SaaS. By binding constraint (H6), we have ݌௦ = (ଶఏିఘିଵ)௤ଶ +݇ + ௡݌ ,We can verify that (H4) is satisfied. By (H8) and (H9) .ߙ = ଷ(ఘିଵ)௤ଶ]ݔܽ݉ + 2݇ − ଷఈଶ , ߩ)2 − ݍ(1 + 4݇]. The perpetual software

vendor’s profit is ߨ௣௘௥௣ௌ௉ଶᇱ = ߩ)2 − ௦௔௔௦ௌ௉ଶᇱߨ and the SaaS vendor’s profit is ,ݍ(1 = ߠ2) − ߩ − ݍ(1 + 2݇ + .ߙ2

If (ߩ − ݍ(1 < ߙ ≤ ଷ(ఘିଵ)௤ଶ , (H5) can be satisfied and the same solution as above holds.

If ߙ > ଷ(ఘିଵ)௤ଶ , then we obtain the boundary solution ݌௦ = ߙ2 + ݇ − ߩ2) − ߠ − ௡݌ Now, (H8) becomes .ݍ(1 ≥ 2݇ + ఈଶ, and (H9) becomes ݌௡ + ௨݌ ≥ 4݇ + ߙ2 − ߩ) − ௨݌ So .ݍ(1 = ߩ) − ௡݌ and ݍ(1 = 4݇ + ߙ2 − ߩ)2 − ௣௘௥௣ௌ௉ଶᇱߨ The perpetual software vendor’s profit is .ݍ(1 ߩ)2= − ௦௔௔௦ௌ௉ଶᇱߨ and the SaaS vendor’s profit is ,ݍ(1 = ߙ4 + 2݇ − ߩ2)2 − ߠ − .ݍ(1

Comparing ߨ௣௘௥௣ௌ௉ଶᇱ with ߨ௣௘௥௣ௌ௉ଵᇱ we see that if ݇ > ଷఈି(ଷఘିସఏାଵ)௤ସ = ௣௘௥௣ௌ௉ଵᇱߨ ଵᇱ, thenܭ > ௣௘௥௣ௌ௉ଶᇱߨ , the entry deterrence strategy dominates the market

segmentation strategy. Solving ܭଵᇱ = 0 we get ߙᇱ.

Case (2) If (ߩ − ݍ(ߠ < ߙ ≤ ߩ) − ,consider SP2′′[(Upgrade1, Upgrade2), (SaaS, New2)]. Given that the NG users adopt (SaaS, New2) ,ݍ(1

OG users prefer (Upgrade1, Upgrade2) rather than (SaaS, Upgrade2) if ݍߩ + ݇ − p௨ ≥ ଵ଴׬ ݍߠ) + ݐߙ + 2݇ − ௨݌ that is ;ݐ݀(௦݌ ≤ ௦݌ + ߩ) ݍ(ߠ− − ݇ − ఈଶ (H10). Given that OG users upgrade in both periods, to ensure NG users prefer (SaaS, New2) rather than (New1, Upgrade2),

we need ׬ଵ଴ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ + ߩ2) − ݍ(1 + 2݇ − ௡݌ ≥ ݍߩ + 2݇ − ௡݌ + ߩ2) − ݍ(1 + 2݇ − ௨݌ ,௨; that is݌ ≥ ௦݌ + ߩ) − ݍ(ߠ + ݇ − ఈଶ

(H11). Because (H10) and (H11) contradict with each other, this user strategy does not support an equilibrium.

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A15

Sequential Dominance Strategy

When ߙ ≥ ߩ) − the two competing firms' periodical quality improvement is competitive against each other. There are three possible ,ݍ(ߠ
strategies:

(1) SP3′[(Upgrade1+SaaS, Upgrade2+SaaS), (New1+SaaS, Upgrade2+SaaS)]. This symmetric strategy can occur in both ߙ ≤ ߩ) − ߙ and ݍ(1 > ߩ) − .ranges ݍ(1

(2) SP3′′[(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)]. This asymmetric strategy can only occur when ߙ ≤ ߩ) − that is, the ;ݍ(1
perpetual software vendor has higher single-period quality improvement than the SaaS vendor.

(3) SP3′′′[(Upgrade1, Upgrade2+SaaS), (New1, Upgrade2+SaaS)]. This asymmetric strategy can only occur when ߙ > ߩ) − that is, the ;ݍ(1
SaaS has higher single-period quality improvement than the perpetual software.

Case (1) Consider SP3′. The sequential dominance strategy involves user switching. If users switch from the new/updated perpetual software

to SaaS in the first period, the switching time is determined by ݍߠ + ఙଵݐߙ + 2݇ − ௦݌ = ݍߩ + 2݇; that is, ݐఙଵ = ௣ೞା(ఘିఏ)௤ఈ . If users switch

from the updated perpetual software to SaaS in the second period, the switching time is determined by ݍߠ + ఙଶݐߙ + 2݇ − ௦݌ = ߩ2) − ݍ(1 +2݇; that is, ݐఙଶ = ௣ೞା(ଶఘିఏିଵ)௤ఈ . If users switch from the old version software to SaaS, the switching time is determined by ݍߠ + ఙଷݐߙ + ݇ ௦݌− = ݍ + ݇, so that ݐఙଷ = ௣ೞି(ఏିଵ)௤ఈ .

If the SaaS vendor would like to serve in both periods, we need 0 < ఙଵݐ < 1 and 1 < ఙଶݐ < 2. That is, if ߙ ≤ ߩ) − ߙ ,ݍ(1 − ߩ2) − ߠ ݍ(1− < ௦݌ ≤ ߙ2 − ߩ2) − ߠ − ߙ if ;(H12) ݍ(1 > ߩ) − ߙ ,ݍ(1 − ߩ2) − ߠ − ݍ(1 < ௦݌ ≤ ߙ − ߩ) − ௦(1݌The SaaS vendor’s profit is 2 .(H13) ݍ(ߠ − (ఙଵݐ + ௦(2݌2 − ∗௦݌ ఙଶ). Solving this optimization problem we have interior solutionݐ = ଷఈି(ଷఘିଶఏିଵ)௤ସ . Checking (H12) and (H13)

we can verify that this interior solution holds if
(ହఘିଶఏିଷ)௤ହ < ߙ < ߩ5) − ߠ2 − .ݍ(3

At this interior solution, given that the OG users choose (Upgrade1+SaaS, Upgrade2+SaaS), in order for NG users to prefer (New1+SaaS,

Upgrade2+SaaS) rather than (SaaS, New2+SaaS), we need (ݍߩ + ఙଵݐ(2݇ − ௨݌ ≥ ௧഑భ଴׬ ݍߠ) + ݐߙ + ݇ − ௨݌ which is ,ݐ݀(௦݌ ≤[௣ೞା(ఘିఏ)௤ାଶ௞][௣ೞା(ఘିఏ)௤]ଶఈ (H14). In order for NG users to prefer (New1+SaaS, Upgrade2+SaaS) rather than (SaaS, SaaS), we have (ݍߩ ఙଵݐ(2݇+ − ௡݌ + ߩ2)] − ݍ(1 + ఙଶݐ)[2݇ − 1) − ௨݌ ≥ ௧഑భ଴׬ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ + ௧഑మଵ׬ ݍߠ) + ݐߙ + ݇ − ௡݌ ,that is ;ݐ݀(௦݌ + ௨݌ ≤[௣ೞା(ఘିఏ)௤ାଶ௞][௣ೞା(ఘିఏ)௤]ା[௣ೞା(ଶఘିఏିଵ)௤ିఈାଶ௞][௣ೞା(ଶఘିఏିଵ)௤ିఈ]ଶఈ (H15). Given the NG users choose (New1+SaaS, Upgrade2+SaaS), in order

for the OG users to prefer (Upgrade1+SaaS, Upgrade2+SaaS) rather than (Old+SaaS, Upgrade2+SaaS), we need (ݍߩ + ఙଵݐ(2݇ − ௨݌ ≥ ݍ) ఙଷݐ(݇+ + ௧഑భ௧഑య׬ ݍߠ) + ݐߙ + ݇ − ௨݌ Solving this inequality we have .ݐ݀(௦݌ ≤ ଶ[(ఘିଵ)௤ା௞]௣ೞାଶ௞(ఘିఏ)௤ା(ఘିଵ)(ఘିଶఏାଵ)௤మଶఈ (H16).

If ߙ ≤ (ଷఘାଶఏିହ)௤ଷ ఙଷݐ , ≤ 0. In order for the OG users to prefer (Upgrade1+SaaS, Upgrade2+SaaS) rather than (SaaS, Upgrade2+SaaS), we

need (ݍߩ + ఙଵݐ(2݇ − ௨݌ ≥ ௧഑భ଴׬ ݍߠ) + ݐߙ + ݇ − ߙ which is the same as (H14). If ,ݐ݀(௦݌ > (ଷఘାଶఏିହ)௤ଷ ఙଷݐ , ≥ 0. Comparing (H14) and

(H16) we can verify that (H16) binds. Therefore, for the SP3′ interior solution, we have the following:

If
(ହఘିଶఏିଷ)௤ହ < ߙ ≤ ߩ) − ௨݌ binds. So (H14) ,ݍ(1 = [(ఘିଶఏାଵ)௤ାଷఈା଼௞][(ఘିଶఏାଵ)௤ାଷఈ]ଷଶఈ and ݌௡ = [(ହఘିଶఏିଷ)௤ିఈା଼௞][(ହఘିଶఏିଷ)௤ିఈ]ଷଶఈ .

Furthermore, ݌௨ < .௡݌

If (ߩ − ݍ(1 < ߙ ≤ (ଷఘାଶఏିହ)௤ଷ , (H14) binds. So we have ݌௨ = ௡݌ = ହఈమା଼ఈ௞ା(ଶସ௞ఘିଵ଺௞ఏିଶఈఘିସఈఏା଺ఈି଼௞)௤ା(ଵଷఘమିଵଶఘఏାସఏమିଵସఘାସఏାହ)௤మଷଶఈ .

If
(ଷఘାଶఏିହ)௤ଷ < ߙ < ߩ2) − ߠ − ݇ ௨. If݌ imposes an upper bound for (H16) ,ݍ(1 > ݇ଵ =ଶଵఘమ௤మାସఘఏ௤మାସఏమ௤మିଶ଺ఈఘ௤ିସఈఏ௤ିସ଺ఘ௤మିଵଶఏ௤మାହఈమାଷ଴ఈ௤ାଶଽ௤మଵ଺[ఈି(ఘିଵ)௤] , we still have ݌௨ = ௡݌ =ହఈమା଼ఈ௞ା(ଶସ௞ఘିଵ଺௞ఏିଶఈఘିସఈఏା଺ఈି଼௞)௤ା(ଵଷఘమିଵଶఘఏାସఏమିଵସఘାସఏାହ)௤మଷଶఈ . We can verify that the condition ݇ > ݇ଵ always holds in this ߙ range.

Now consider the boundary solution. If (ߩ − ݍ(ߠ ≤ ߙ ≤ (ହఘିଶఏିଷ)௤ହ , then the SaaS vendor prices at boundary solution ݌௦∗ = ߙ2 − ߩ2) − ߠ ఙଶݐ ,Correspondingly .ݍ(1− = 2. SP3′ degenerates to equilibrium SP3′′[(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)]. Substituting ݌௦∗ into (H14) we have ݌௨ = [ଶఈି(ఘିଵ)௤ାଶ௞][ଶఈି(ఘିଵ)௤]ଶఈ . By (H15) we have ݌௨ = ݇ + ఈଶ.

Guo & Ma/Perpetual Software and Software as a Service

A16 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

If ߙ > ߩ5) − ߠ2 − ∗௦݌ then the SaaS vendor prices at boundary price ,ݍ(3 = ߙ − ߩ) − ఙଵݐ ,Correspondingly .ݍ(ߠ = 1. SP3′ degenerates to
equilibrium SP3′′′[(Upgrade1, Upgrade2+SaaS), (New1, Upgrade2+SaaS)]. However, note that (5ߩ − ߠ2 − ݍ(3 > ߩ2) − ߠ − So the .ݍ(1
degenerated SP3′′′ does not occur in the ߙ range we consider.

Case (2) Consider SP3′′. Knowing it only serves in one period, the SaaS vendor’s optimization problem becomes 2݌௦(1 − ఙଵ). The optimalݐ

interior solution is ݌௦∗ = ఈି(ఘିఏ)௤ଶ . The conditions for 0 < ఙଵݐ < 1 and ݐఙଶ ≥ 2 are 2ߙ − ߩ2) − ߠ − ݍ(1 ≤ ௦݌ < ߙ − ߩ) − Checking .ݍ(ߠ

this condition we see the interior solution holds if ߙ ≤ (ଷఘିఏିଶ)௤ଷ < ߩ) − .ݍ(1

Given that OG users choose (Upgrade1+SaaS, Upgrade2), in order for NG users to prefer (New1+SaaS, Upgrade2) rather than (SaaS, New2),

we need (ݍߩ + ఙଵݐ(2݇ − ௨݌ ≥ ௧഑భ଴׬ ݍߠ) + ݐߙ + ݇ − which is the same condition as (H14). In order for NG users to prefer ,ݐ݀(௦݌

(New1+SaaS, Upgrade2) rather than (SaaS, SaaS), we need (ݍߩ + ఙଵݐ(2݇ − ௡݌ + ߩ2) − ݍ(1 + 2݇ − ௨݌ ≥ ௧഑భ଴׬ ݍߠ) + ݐߙ + ݇ − ݐ݀(௦݌ ଶଵ׬+ ݍߠ) + ݐߙ + ݇ − ௨݌ ,that is ;ݐ݀(௦݌ + ௡݌ ≤ ߩ2) − ߠ − ݍ(1 + ݇ + ௦݌ − ଷఈଶ + [௣ೞା(ఘିఏ)௤ାଶ௞][௣ೞା(ఘିఏ)௤]ଶఈ (H17). Given that NG users choose

(New1+SaaS, Upgrade2), in order for the OG users to prefer (Upgrade1+SaaS, Upgrade2) rather than (Old+SaaS, Upgrade2), we need (ݍߩ ఙଵݐ(2݇+ − ௨݌ ≥ ݍ) + ఙଷݐ(݇ + ௧഑భ௧഑య׬ ݍߠ) + ݐߙ + ݇ − .which is the same condition as (H16) ,ݐ௦)d݌

When ߙ ≤ (ଷఘିఏିଶ)௤ଷ < ߩ) − ௨݌ binds and we have (H14) ,ݍ(1 = [(ఘିఏ)௤ାఈାସ௞][(ఘିఏ)௤ାఈ]଼ఈ and ݌௡ = (ଷఘିఏିଶ)௤ଶ − ߙ + ݇. Furthermore, ݌௨ .௡݌>

Now consider the boundary solution. If
(ଷఘିఏିଶ)௤ଷ < ߙ ≤ ߩ) − ∗௦݌ substituting ,ݍ(1 = ߙ2 − ߩ2) − ߠ − ௨݌ into (H14) we have ݍ(1 =[ଶఈି(ఘିଵ)௤ାଶ௞][ଶఈି(ఘିଵ)௤]ଶఈ , and by (H17), ݌௡ = ݇ + ఈଶ.

Case (3) Consider SP3′′′. Knowing it only serves in one period, the SaaS vendor’s optimization problem becomes 2݌௦(2 − ఙଶ). The optimalݐ

interior solution is ݌௦∗ = ଶఈି(ଶఘିఏିଵ)௤ଶ . The conditions for ݐఙଵ ≥ 1 and 1 < ఙଶݐ < 2 are ߙ − ߩ) − ݍ(ߠ ≤ ௦݌ < ߙ2 − ߩ2) − ߠ − .(H18) ݍ(1

Checking this condition we can verify that the interior solution does not hold. So the SaaS vendor prices at boundary price ݌௦∗ = ߙ − ߩ) ௨݌ ௦∗ into (H14) we have݌ Substituting .ݍ(ߠ− = [ଶఈି(ఘିଵ)௤ାଶ௞][ଶఈି(ఘିଵ)௤]ଶఈ . By (H15) we have ݌௡ = ݇ + ఈଶ.

We see that in the range (ߩ − ݍ(ߠ ≤ ߙ < ߩ2) − ߠ − there are two equilibrium strategies: one symmetric (SP3′) and one asymmetric ,ݍ(1
(SP3′′ or SP3′′′). It is worth noting that if an equilibrium pricing strategy consists of boundary price, then the equilibrium is unstable because
the vendor can easily deviate from the boundary pricing strategy by lowering its price a little bit, and then end up with entering the feasible
pricing region of the other equilibrium. If an equilibrium pricing strategy consists of interior solution, it emerges as the final stable equilibrium
at which both vendors have no incentive to deviate given the other vendor's strategy. Comparing the equilibrium profits under the different
regions, we can establish the equilibrium outcome in the two-period model. We summarize and present the results in Proposition 7, where ܭଶᇱ and ܭଷᇱ are determined by solving ߨ௣௘௥௣ௌ௉ଷᇲᇲ = ௣௘௥௣ௌ௉ଶᇲߨ and ߨ௣௘௥௣ௌ௉ଷᇲ = ௣௘௥௣ௌ௉ଶᇲߨ in their respective segments. We omit their lengthy mathematical
expressions here. In summary, we obtain the following equilibrium outcome.

Proposition 7 (Equilibrium Outcome in the Two-Period Model)

(a) (Entry Deterrence Equilibrium) If ߙ ≤ ߩ) − ݇ and ݍ(ߠ > ଵᇱ, the perpetual software vendor deters the SaaS vendor’s entry in bothܭ
periods. The equilibrium user strategy is [(Upgrade1, Upgrade2), (New1, Upgrade2)]. The perpetual software vendor’s equilibrium prices
are ݌௨∗ = ߩ) − ݍ(ߠ + ݇ − ఈଶ and ݌௡∗ = ߩ2) − ߠ − ݍ(1 + ݇ − ଷఈଶ .

(b) (Market Segmentation Equilibrium) If i)ߙ ≤ ߩ) − ݇ and ݍ(ߠ ≤ ߩ) (ଵᇱ, or iiܭ − ݍ(ߠ < ߙ ≤ (ଷఘିఏିଶ)௤ଷ and ݇ ≤ ଶᇱ, or iii) (ଷఘିఏିଶ)௤ଷܭ ߙ> < ߩ2) − ߠ − ݇ and ,ݍ(1 ≤ ଷᇱ, the perpetual software vendor and the SaaS vendor segment the market. The equilibrium user strategy isܭ
[(Upgrade1, Upgrade2), (SaaS, SaaS)], and the equilibrium prices are as follows:

If ߙ ≤ ଷ(ఘିଵ)௤ଶ , then ݌௨∗ = ߩ) − ∗௡݌ ,ݍ(1 = ଷ(ఘିଵ)௤ଶ]ݔܽ݉ + 2݇ − ଷఈଶ , ߩ)2 − ݍ(1 + 4݇], and ݌௦∗ = (ଶఏିఘିଵ)௤ଶ + ݇ + .ߙ

If ߙ > ଷ(ఘିଵ)௤ଶ , then ݌௨∗ = ߩ) − ∗௡݌ ,ݍ(1 = 4݇ + ߙ2 − ߩ)2 − ∗௦݌ and ,ݍ(1 = ߙ2 + ݇ − ߩ2) − ߠ − .ݍ(1

(c) (Sequential Dominance Equilibrium) i) If (ߩ − ݍ(ߠ < ߙ ≤ (ଷఘିఏିଶ)௤ଷ and ݇ > ଶᇱ, the perpetual software vendor and the SaaS vendorܭ
sequentially serve the market. The equilibrium user strategy is [(Upgrade1+SaaS, Upgrade2), (New1+SaaS, Upgrade2)]. The equilibrium
prices are: ݌௨∗ = [(ఘିఏ)௤ାఈାସ௞][(ఘିఏ)௤ାఈ]଼ఈ ∗௡݌ , = (ଷఘିఏିଶ)௤ଶ − ߙ + ݇, and ݌௦∗ = ఈି(ఘିఏ)௤ଶ .

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A17

ii) If (ଷఘିఏିଶ)௤ଷ < ߙ < ߩ2) − ߠ − ݇ and ݍ(1 > ଷᇱ, the perpetual software vendor and the SaaS vendor sequentially serve the market. Theܭ
equilibrium user strategy is [(Upgrade1+SaaS, Upgrade2+SaaS), (New1+SaaS, Upgrade2+SaaS)]. The equilibrium prices are as follows:

If ߙ ≤ ߩ) − ∗௨݌ then ,ݍ(1 = [(ఘିଶఏାଵ)௤ାଷఈା଼௞][(ఘିଶఏାଵ)௤ାଷఈ]ଷଶఈ ∗௡݌ , = [(ହఘିଶఏିଷ)௤ିఈା଼௞][(ହఘିଶఏିଷ)௤ିఈ]ଷଶఈ , and ݌௦∗ = ଷఈି(ଷఘିଶఏିଵ)௤ସ .

If ߙ > ߩ) − ∗௨݌ then ,ݍ(1 = ∗௡݌ = ହఈమା଼ఈ௞ା(ଶସ௞ఘିଵ଺௞ఏିଶఈఘିସఈఏା଺ఈି଼௞)௤ା(ଵଷఘమିଵଶఘఏାସఏమିଵସఘାସఏାହ)௤మଷଶఈ , and ݌௦∗ = ଷఈି(ଷఘିଶఏିଵ)௤ସ .

Appendix I

SaaS Vendor's Quality Improvement Cost

Proposition 8 (Entry Deterrence Equilibrium with ܿ ఈ) The perpetual software vendor deters the SaaS vendor’s entry when the network effect
is strong enough or when the SaaS quality improvement cost is high enough. The equilibrium user strategy is SP1 (Upgrade, New), where
the OG users upgrade and the NG users adopt the new perpetual software. The equilibrium prices are as follows:

(a) If ܿఈ ≤ ఈଶ + ߠ) − ݇ and ݍ(1 ≥ ଵᇱܭ = ఈି(ఘିଶఏାଵ)௤ିଶ௖ഀଶ , then ݌௨௖ഀ = ௡௖ഀ݌ = ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ.

(b) If ܿఈ > ఈଶ + ߠ) − ௨௖ഀ݌ then ,ݍ(1 = ߩ) − ݍ(1 + ݇ and ݌௡௖ഀ = ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ.

Proof. Consider SP1 (Upgrade, New). Similar to the Proof of Proposition 2, we must ensure that the OG users prefer upgrading to the new
version rather than continuing to use the old version, which requires ݍߩ + 2݇ − ௨݌ ≥ ݍ + ݇; that is, ݌௨ ≤ ߩ) − ݍ(1 + ݇ (I1). Meanwhile,
the perpetual software vendor needs to make sure that OG users prefer upgrading rather than adopting SaaS, even if the SaaS price is reduced

to the lowest level ݌௦ = ܿఈ. That is, the entry deterrence condition is ݍߩ + 2݇ − ௨݌ ≥ ଵ଴׬ ݍߠ) + ݐߙ + ݇ − ܿఈ)݀ݐ, so that ݌௨ ≤ ߩ) − ݍ(ߠ +݇ − ఈଶ + ܿఈ (I2). Similarly, to ensure that NG users prefer the new perpetual software to the SaaS at ݌௦ = ܿఈ, the condition is ݍߩ + 2݇ ௡݌− ≥ ଵ଴׬ ݍߠ) + ݐߙ + ݇ − ܿఈ)݀ݐ; that is, ݌௡ ≤ ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ (I3).

If ܿఈ ≤ ఈଶ + ߠ) − ௨݌ is binding. Because (I2) ,ݍ(1 ≤ ௡, by (I2) and (I3) the perpetual software vendor sets the prices at respective upper݌

bounds: ݌௡ௌ௉ଵ = ௨ௌ௉ଵ݌ = ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ. Consequently, we get the perpetual software vendor’s profit ߨ௣௘௥௣ௌ௉ଵ = ߩ)2 − ݍ(ߠ + 2݇ ߙ− + 2ܿఈ.

If ܿఈ > ఈଶ + (θ − ௨ௌ௉ଵ݌ is binding. By (I2) and (I3) we have (I1) ,ݍ(1 = ߩ) − ݍ(1 + ݇ and ݌௡ௌ௉ଵ = ߩ) − ݍ(ߠ + ݇ − ఈଶ + ܿఈ. Consequently, we

get the perpetual software vendor’s profit ߨ௣௘௥௣ௌ௉ଵ = ߩ2) − ߠ − ݍ(1 + 2݇ − ఈଶ + ܿఈ.

Consider SP2 (Upgrade, SaaS). Similar to the Proof of Proposition 3, we have ݌௨ ≤ ߩ) − ௨݌ ;(I4) ݍ(1 ≤ ௦݌ + ߩ) − ݍ(ߠ − ݇ − ఈଶ (I5); and ݌௡ ≥ ௦݌ + ߩ) − ݍ(ߠ + ݇ − ఈଶ (I6).

To maximize its profit, the perpetual software vendor sets ݌௡ as high as possible so that the SaaS vendor can also charge a high enough price ݌௦, which in turn allows the perpetual software vendor to charge a high upgrade price ݌௨. As a result, the perpetual software vendor charges ݌௨ = ߩ) − ߙ to make the OG users’ IC constraint (I4) binding. If ݍ(1 ≤ ߩ)2 − ௦ௌ௉ଶ݌ the SaaS vendor charges as much as ,ݍ(1 = ߠ) − ݍ(1 +݇ + ఈଶ by (I5), and by (I6) ݌௡ௌ௉ଶ = ߩ) − ݍ(1 + 2݇. If ߙ > ߩ)2 − ௦ௌ௉ଶ݌ then the boundary solution ,ݍ(1 = ߙ + ݇ − ߩ) − as specified in ݍ(ߠ

Table C1 holds. By (I4) and (I5) ݌௨ௌ௉ଶ = ߩ) − ௡ௌ௉ଶ݌ and by (I6) ݍ(1 = ఈଶ + ݇. So ߨ௣௘௥௣ௌ௉ଶ = ߩ) − .ݍ(1

Finally, we compare the perpetual software vendor’s profits under SP1 and SP2. We can show that, if ܿఈ ≤ ఈଶ + ߠ) − ௣௘௥௣ௌ௉ଵߨ then ,ݍ(1 ௣௘௥௣ௌ௉ଶߨ< if ݇ > ఈି(ఘିଶఏାଵ)௤ିଶ௖ഀଶ . If ܿఈ > ఈଶ + ߠ) − ௣௘௥௣ௌ௉ଵߨ then ,ݍ(1 > ௣௘௥௣ௌ௉ଶߨ .

Guo & Ma/Perpetual Software and Software as a Service

A18 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

Appendix J

OG User's Switching Cost

Proposition 9 (Equilibria with OG User Switching Cost) Both the SaaS quality improvement rate ߙ and users’ switching cost ܿ affect the
equilibrium outcome as follows:

(a) (Entry Deterrence Equilibrium) If ߙ ≤ ଵ, the perpetual software vendor deters the SaaS vendor’s entry. The equilibrium user strategyܣ
is SP1 (Upgrade, New). The perpetual software vendor’s equilibrium prices are ݌௨∗ = ∗௡݌ = ߩ) − ݍ(ߠ − ఈଶ.

(b) (Market Segmentation Equilibrium) The perpetual software vendor and the SaaS vendor segment the market. The equilibrium user
strategy is SP2 (Upgrade, SaaS).

If i) ܣଵ < ߙ ≤ ߙ (ଶ, or iiܣ > ଶܥ ଶ andܣ < ܿ ≤ ∗௨݌ ଵ, then equilibrium prices areܥ = ∗௡݌ = ߩ) − ∗௦݌ and ݍ(1 = ߠ) − ݍ(1 + ఈଶ.

If ߙ ≤ ܿ ଷ andܣ ≤ ∗௨݌ ଶ, then equilibrium prices areܥ = ߩ) − ∗௡݌ ,ݍ(1 = ఈଶ − ∗௦݌ and ,ܿߙ2√ = ߙ − ߩ) − ݍ(ߠ − .ܿߙ2√

(c) (Competitive Lock-in Equilibrium) If ߙ > ܿ ଶ andܣ > ,ଵ, the perpetual software vendor serves the OG users over the whole time interval [0,1] and NG users in the time interval [0ܥ ఈା(ఘିఏ)௤ଶఈ]. The SaaS vendor serves the NG users in the time interval [ఈା(ఘିఏ)௤ଶఈ , 1]. The equilibrium

user strategy is SP7 (Upgrade, New+SaaS). The equilibrium prices are ݌௨∗ = ∗௡݌ = [ఈା(ఘିఏ)௤]మ଼ఈ and ݌௦∗ = ఈି(ఘିఏ)௤ଶ .

(d) (Sequential Dominance Equilibrium) If ߙ > ܿ ଷ andܣ ≤ ଶ, the perpetual software vendor serves both OG and NG users in the timeܥ
interval [0, ఈା(ఘିఏ)௤ଶఈ], and the SaaS vendor serves both OG and NG users in the time interval [ఈା(ఘିఏ)௤ଶఈ , 1]. The equilibrium user strategy is

SP6 (Upgrade+SaaS, New+SaaS). The equilibrium prices are ݌௨∗ = (ఘିଵ)௤[ఈି(ఏିଵ)௤]ଶఈ ∗௡݌ , = [ఈା(ఘିఏ)௤]మ଼ఈ , and ݌௦∗ = ఈି(ఘିఏ)௤ଶ .

Our proof involves several steps. First, given user strategies, we analyze four sub-game perfect equilibria and the corresponding vendor prices
and profits. Then we derive the final equilibrium outcome under different market conditions.

Entry Deterrence Strategy

Note that SP1 (Upgrade, New) can only occur when ߙ ≤ ߩ) − That is, the quality of SaaS does not exceed the quality of the new .ݍ(ߠ
perpetual software at the end of the product life cycle.

Given that NG users purchase the new perpetual software, OG users prefer to upgrade rather than continue to use the old version. So we have ݌௨ ≤ ߩ) − ௨݌ Also, OG users prefer to upgrade rather than opt for SaaS. Note that moving to SaaS incurs additional switching costs ܿ. So we get .(J1) ݍ(1 ≤ ߩ) − ݍ(ߠ − ఈଶ + ܿ (J2).

Given that OG users upgrade, NG users prefer to buy the new perpetual software rather than SaaS. This situation gives us ݌௡ ≤ ߩ) − ݍ(ߠ − ఈଶ

(J3). In addition, we have the constraint ݌௡ ≥ .௨݌

Putting all these constraints together, we get the perpetual software vendir’s prices ݌௨ௌ௉ଵ = ௡ௌ௉ଵ݌ = ߩ) − ݍ(ߠ − ఈଶ and profit ߨ௣௘௥௣ௌ௉ଵ = ߩ)2 ݍ(ߠ− − .ߙ

Market Segmentation Strategy

Consider SP2 (Upgrade, SaaS), where the perpetual software vendor allows the SaaS vendor to enter the market. It can happen under both ߙ ≤ ߩ) − ߙ and ݍ(ߠ > ߩ) − .ݍ(ߠ

Case (1) ߙ ≤ ߩ) − Given that NG users choose SaaS, we need to ensure that, for OG users, upgrading is better than using the old version .ݍ(ߠ
and also better than SaaS. Thus, (J1) and ݌௦ ≥ ௨݌ − ߩ) − ݍ(ߠ + ఈଶ − ܿ (J4) must hold. Similarly, NG users prefer SaaS to the new perpetual

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A19

software, and so ݌௦ ≤ ௡݌ − ߩ) − ݍ(ߠ + ఈଶ (J5). In addition, ݌௡ ≥ ௨ௌ௉ଶ݌ ௨. So we get݌ = ௡ௌ௉ଶ݌ = ߩ) − ௦ௌ௉ଶ݌ ,ݍ(1 = ߠ) − ݍ(1 + ఈଶ. Vendor

profits are ߨ௣௘௥௣ௌ௉ଶ = ߩ) − ௌ௔௔ௌௌ௉ଶߨ and ݍ(1 = ߠ) − ݍ(1 + ఈଶ.

Case (2) ߙ > ߩ) − is large, the SaaS becomes competitive, and switching becomes possible. We first derive the non-switching ߙ When .ݍ(ߠ
(NS) condition for OG users. Conditional on the fact that OG users switch, the switching time is when the net payoff from SaaS exceeds the

the net payoff from the new version of perpetual software. Similar to the baseline case, ݐ௦ଵ = ௣ೞି(ఏିଵ)௤ఈ . Taking into account the switching

cost, the condition for switching is ׬ଵ௧ೞభ ݍߠ) + ݐߙ − ݐ݀(௦݌ − 1)ݍߩ − (௦ଵݐ ≥ ܿ. Substituting into ݐ௦ଵ and solving this inequality, we get ݌௦ ߙ≤ − ߩ) − ݍ(ߠ − .(NS) ܿߙ2√

We can verify that the SaaS price derived in Case (1) satisfies this (NS) condition when √2ܿߙ ≥ ఈଶ − ߩ) − ܿ ,that is ;ݍ(1 ≥ [ఈିଶ(ఘିଵ)௤]మ଼ఈ .ଶ. Therefore the same optimal solutions applyܥ≐

When ܿ < ௦݌ ଶ, however, the (NS) condition is binding, soܥ = ߙ − ߩ) − ݍ(ߠ − Reexamining the incentive compatibility conditions .ܿߙ2√
(J1), (J4), and (J5), we get ݌௨ௌ௉ଶ = ߩ) − ௡ௌ௉ଶ݌ ,ݍ(1 = ఈଶ − ௨ௌ௉ଶ݌ by (J3), and ܿߙ2√ < ௣௘௥௣ௌ௉ଶߨ ௡ௌ௉ଶ. The vendor’s profits are݌ = ߩ) − ௌ௔௔ௌௌ௉ଶߨ and ݍ(1 = ߙ − ߩ) − ݍ(ߠ − .ܿߙ2√

Competitive Lock-In Strategy

Consider a new strategy pair (Upgrade, New+SaaS). We denote it as SP7. It occurs under the condition ߙ > ߩ) − where the SaaS quality ,ݍ(ߠ
outperforms the perpetual software quality at some time ݐ ∈ [0,1]. To ensure that OG users do not switch, the (NS) condition must hold. And
to ensure that NG users switch, the net payoff from SaaS must be higher than the net payoff from the new perpetual software by time ݐ = 1;

that is, ݍߠ + ߙ − ௦݌ ≥ ௦݌ So .ݍߩ ≤ ߙ − ߩ) − ௦ଷݐ In addition, NG users switch at .(J6) ݍ(ߠ = (ఘିఏ)௤ା௣ೞఈ . The SaaS vendor’s profit thus is

expressed as ݌௦(1 − ∗௦݌ ௦ଷ), and the optimal SaaS price isݐ = ఈି(ఘିఏ)௤ଶ . Accordingly, the optimal switching time is ݐ௦ଷ∗ = ఈା(ఘିఏ)௤ଶఈ . There are

two cases:

Case (1) When ܿ ≥ [ఈି(ఘିఏ)௤]మ଼ఈ , the interior solution ݌௦ௌ௉଻ = ఈି(ఘିఏ)௤ଶ satisfies both (NS) and (J6). We now check the incentive compatibility

conditions for both groups of users. Given that OG users upgrade, NG users prefer New+SaaS over SaaS if ݐݍߩ௦ଵ∗ − ௡݌ ׬+ ݍߠ) + ݐߙ − ∗ଵ௧ೞభݐ݀(∗௦݌ ≥ ׬ ݍߠ) + ݐߙ − ଵ଴ݐ݀(∗௦݌ (J7). Substituting into ݌௦ௌ௉଻ and ݐ௦ଷ∗ and simplifying the condition, we get ݌௡ ≤ [ఈା(ఘିఏ)௤]మ଼ఈ ݍߩ ଵ. Similarly, given that NG users choose New+SaaS, OG users prefer Upgrade over Old+SaaS if݌≐ − ௨݌ ≥ ∗௦ଵݐݍ + ׬ ݍߠ) + ݐߙ − ∗ଵ௧ೞభݐ݀(∗௦݌ −ܿ (J8), where ݐ௦ଵ∗ is the switching time if OG users switch from the old version of perpetual software to SaaS, and ݐ௦ଵ∗ is given by ݍߠ + ∗௦ଵݐߙ ∗௦݌− = ∗௦ଵݐ ௦ௌ௉଻, we have݌ Using .ݍ = ఈି(ఘାఏିଶ)௤ଶఈ . If ߙ < ߩ) + ߠ − ௡݌ is satisfied. So (J8) ,ݍ(2 = ௨݌ = [ఈା(ఘିఏ)௤]మ଼ఈ . If ߙ ≥ ߩ) + ߠ − ∗௦ଵݐ ,ݍ(2 > 0. Substituting ݐ௦ଵ∗ into (J8) we get ݌௨ ≤ ߩ) − 1) − [ఈା(ఘାఏିଶ)௤]మ଼ఈ + ܿ ≐ ܿ ଶ. When݌ = [ఈି(ఘିఏ)௤]మ଼ఈ ଶ݌ , < ଶ linearly݌ ଵ. Because݌

increases in ܿ, there is a threshold value ܿ∗ = [ఈା(ఘିఏ)௤]మା[ఈା(ఘାఏିଶ)௤]మ଼ఈ − ߩ) − such that, for ݍ(1
[ఈି(ఘିఏ)௤]మ଼ఈ ≤ ܿ < ଵ݌ ,∗ܿ > ௡ௌ௉଻݌ ,ଶ; thus݌ = [ఈା(ఘିఏ)௤]మ଼ఈ and ݌௨ௌ௉଻ = ߩ) − ݍ(1 − [ఈା(ఘାఏିଶ)௤]మ଼ఈ + ܿ; and for ܿ ≥ ଵ݌ ,∗ܿ < ௡ௌ௉଻݌ ,ଶ; thus݌ = ௨ௌ௉଻݌ = [ఈା(ఘିఏ)௤]మ଼ఈ .

Case (2) When ܿ < [ఈି(ఘିఏ)௤]మ଼ఈ , we have a boundary solution ݌௦ௌ௉଻ = ߙ − ߩ) − ݍ(ߠ − ∗௦ଷݐ accordingly, the switching time becomes ;ܿߙ2√ =ఈି√ଶఈ௖ఈ . We next check users’ incentive compatibility conditions. Condition (J7) becomes ݌௡ ≤ ఈଶ − ܿߙ2√ + ܿ ≐ ∗௦ଵݐ ,ଵ. For condition (J8)݌ =௣ೞ∗ି(ఏିଵ)௤ఈ = ఈି(ఘିଵ)௤ି√ଶఈ௖ఈ . If ߙ < ߩ) − ߙ or if ,ݍ(1 ≥ ߩ) − ܿ and ݍ(1 > [ఈି(ఘିଵ)௤]మଶఈ , (J8) is satisfied. In these cases, ݌௡ௌ௉଻ = ௨ௌ௉଻݌ = ఈଶ ܿߙ2√− + ܿ. If ߙ ≥ ߩ) − ܿ and ݍ(1 < [ఈି(ఘିଵ)௤]మଶఈ ∗௦ଵݐ , > 0, substituting ݐ௦ଵ∗ into (J8), we get ݌௨ ≤ ߩ) − 1) − [(ఘିଵ)௤ା√ଶఈ௖]మଶఈ + ܿ ≐ ଶ. We can݌

verify that ݌ଵ > ௡ௌ௉଻݌ ,ଶ. Hence݌ = ఈଶ − ܿߙ2√ + c, ݌௨ௌ௉଻ = ߩ) − 1) − [(ఘିଵ)௤ା√ଶఈ௖]మଶఈ + ܿ, and ݌௡ௌ௉଻ > .௨ௌ௉଻݌

Sequential Dominance Strategy

This strategy pair is SP6 (Upgrade+SaaS, New+SaaS). It occurs under the condition ߙ > ߩ) − ,To ensure that OG users switch to SaaS .ݍ(ߠ
the switching condition is ݌௦ < ߙ − ߩ) − ݍ(ߠ − and note that when this condition holds, NG users also switch. Similar to the ,(J9) ܿߙ2√

Guo & Ma/Perpetual Software and Software as a Service

A20 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

baseline model, the switching time is ݐ௦ଷ = (ఘିఏ)௤ା௣ೞఈ . The SaaS vendor’s profit thus is expressed as 2݌௦(1 − ௦ଷ), and the optimal SaaS priceݐ

is ݌௦∗ = ఈି(ఘିఏ)௤ଶ . Accordingly, the optimal switching time is ݐ௦ଷ∗ = ఈା(ఘିఏ)௤ଶఈ . We get three cases:

Case (1) When ܿ < [ఈି(ఘିఏ)௤]మ଼ఈ , the internal optimal solution ݌௦ௌ௉଺ = ఈି(ఘିఏ)௤ଶ satisfies (J9). The solution is the same as the baseline model,

as in Proposition 4.

Case (2) When
[ఈି(ఘିఏ)௤]మ଼ఈ ≤ ܿ < [ఈି(ఘିఏ)௤]మଶఈ , we derive the boundary solution ݌௦ௌ௉଺ = ߙ − ߩ) − ݍ(ߠ − accordingly, the switching ;ܿߙ2√

time becomes ݐ௦ଷ∗ = ఈି√ଶఈ௖ఈ . We reexamine the incentive compatibility conditions. Given that OG users choose Upgrade+SaaS, NG users

prefer New+SaaS over SaaS if ݐݍߩ௦ଷ∗ − ௡݌ + ׬ ݍߠ) + ݐߙ − ∗ଵ௧ೞయݐ݀(∗௦݌ ≥ ׬ ݍߠ) + ݐߙ − ଵ଴ݐ݀(∗௦݌ . So we get ݌௡ ≤ [ఈି√ଶఈ௖]మଶఈ ≐ ଵ. Given that NG݌

users choose New+SaaS, OG users prefer Upgrade+SaaS over Old+SaaS if ݐݍߩ௦ଶ∗ − ௨݌ + ׬ ݍߠ) + ݐߙ − ∗ଵ௧ೞమݐ݀(∗௦݌ − ܿ ≥ ∗௦ଵݐݍ ׬+ ݍߠ) + ݐߙ − ∗ଵ௧ೞభݐ݀(∗௦݌ − ܿ (J10), where ݐ௦ଵ∗ = ௣ೞೄುలି(ఏିଵ)௤ఈ = ఈି(ఘିଵ)௤ି√ଶఈ௖ఈ . We note that ݐ௦ଵ∗ < 0 when ߙ < ߩ) + ߠ − ߙ or ,ݍ(2 > ߩ) + ߠ and ݍ(2−
[ఈି(ఘିଵ)௤]మଶఈ ≤ ܿ < [ఈି(ఘିఏ)௤]మଶఈ . So (J10) is satisfied and ݌௡ௌ௉଺ = ௨ௌ௉଺݌ = [ఈି√ଶఈ௖]మଶఈ . When ߙ ≥ ߩ) + ߠ − and ݍ(2

[ఈି(ఘିఏ)௤]మ଼ఈ ≤ ܿ <[ఈି(ఘିଵ)௤]మଶఈ ∗௦ଵݐ , > 0. Substituting ݐ௦ଵ∗ into (J10), we get ݌௨ ≤ (ఘିଵ)௤(ఈି√ଶఈ௖)ఈ − [(ఘିଵ)௤]మଶఈ ≐ ଵ݌ ଶ. Because݌ − ଶ݌ = [ఈି(ఘିଵ)௤ି√ଶఈ௖]మଶఈ > 0, we

have ݌௡ௌ௉଺ = [ఈି√ଶఈ௖]మଶఈ ௨ௌ௉଺݌ , = (ఘିଵ)௤(ఈି√ଶఈ௖)ఈ − [(ఘିଵ)௤]మଶఈ , and ݌௡ௌ௉଺ > .௨ௌ௉଺݌

Case (3) When ܿ ≥ [ఈି(ఘିఏ)௤]మଶఈ , the condition (J9) does not hold. Thus, SP6 does not appear.

Profit Comparison in All Parameter Regions

To see which strategy pair is the equilibrium, we need to compare the vendor’s profits. When ߙ ≤ ߩ) − ;both SP1 and SP2 are possible ,ݍ(ߠ
when ߙ > ߩ) − SP2, SP6, and SP7 are possible. Using Table 3, we have in total 10 parameter regions to study. In the following, we ,ݍ(ߠ
examine one region to show how we obtain the equilibrium; for all the rest of the comparisons, the analysis is similar.

Consider the parameter region ߙ ≥ ߩ) − max ,ݍ(ߠ ቄ[ఈି(ఘିଵ)௤]మଶఈ , [ఈି(ఘିఏ)௤]మ଼ఈ ቅ < ܿ < [ఈି(ఘିఏ)௤]మଶఈ . In this region, SP2, SP6, and SP7 are all

feasible strategies. Vendor profits are ߨ௣௘௥௣ௌ௉ଶ = ߩ) − ௌ௔௔ௌௌ௉ଶߨ ,ݍ(1 = ߠ) − ݍ(1 + ఈଶ in SP2, ߨ௣௘௥௣ௌ௉଺ = [ఈି√ଶఈ௖]మఈ ௌ௔௔ௌௌ௉଺ߨ , = ଶ[ఈି(ఘିఏ)௤ି√ଶఈ௖]√ଶఈ௖ఈ

in SP6, and ߨ௣௘௥௣ௌ௉଻ = [ఈା(ఘିఏ)௤]మସఈ ௌ௔௔ௌௌ௉଻ߨ , = [ఈି(ఘିఏ)௤]మସఈ in SP7, respectively.

We first compare SP6 and SP7. Because ߨ߂௣௘௥௣ௌ௉଻ି଺ = [ଷఈା(ఘିఏ)௤ିଶ√ଶఈ௖][ିఈା(ఘିఏ)௤ାଶ√ଶఈ௖]ସఈ > 0, the perpetual software vendor prefers SP7 to

SP6. For the SaaS vendor, we find that ∂ߨ߂ௌ௔௔ௌௌ௉଻ି଺/ ∂ܿ = ଶ[(ఘିఏ)௤ାଶ√ଶఈ௖ିఈ]√ଶఈ௖ > 0. If (ߩ − ݍ(ߠ < ߙ < ߩ) + ߠ − ܿ ,ݍ(2 = [ఈି(ఘିఏ)௤]మ଼ఈ and ܿ =[ఈି(ఘିఏ)௤]మଶఈ . If ߙ ≥ ߩ) + ߠ − ܿ ,ݍ(2 = [ఈି(ఘିଵ)௤]మଶఈ and ܿ = [ఈି(ఘିఏ)௤]మଶఈ . We can show that ߨ߂ௌ௔௔ௌௌ௉଻ି଺ < 0 at ܿ and ߨ߂ௌ௔௔ௌௌ௉଻ି଺ > 0 at ܿ. So a

value ܥଵ must exist in this parameter region such that ߨ߂ௌ௔௔ௌௌ௉଻ି଺ = 0 at ܥଵ. Solving the equation, we get ܥଵ = (√ଶାଵ)మ[ఈି(ఘିఏ)௤]మଵ଺ఈ . For ܿ < ௌ௔௔ௌௌ௉଻ି଺ߨ߂ ,ଵܥ < 0, meaning that the SaaS vendor prefers SP6 to SP7 and so reduces its price to deviate to SP6. Meanwhile, for ܿ > ௌ௔௔ௌௌ௉଻ି଺ߨ߂ ,ଵܥ >0 meaning that the SaaS vendor prefers SP7 to SP6.

We next compare SP2 with SP6 when ܿ < ܿ ଵ, and we compare SP2 with SP7 whenܥ > .ଵܥ

Case (1) ܿ < /ௌ௔௔ௌௌ௉଺ିଶߨ߂∂ ,ଵ. For the SaaS vendorܥ ∂ܿ = ିଶ[(ఘିఏ)௤ାଶ√ଶఈ௖ିఈ]√ଶఈ௖ < 0; and ߨ߂ௌ௔௔ௌௌ௉଺ିଶ < 0 at ܿ = [ఈି(ఘିఏ)௤]మ଼ఈ . Because in this region

all ܿ ≥ [ఈି(ఘିఏ)௤]మ଼ఈ , we conclude that ߨ߂ௌ௔௔ௌௌ௉଺ିଶ < 0 in the whole region. Thus, the SaaS vendor always prefers SP2. For the perpetual software

vendor, ߨ߂௣௘௥௣ௌ௉଺ିଶ = ߙ + 2ܿ − ܿߙ2√2 − ߩ) − ௣௘௥௣ௌ௉଺ିଶߨ߂ We solve .ݍ(1 = 0 and get two solutions: ܿ ଵ = [√ఈିඥ(ఘିଵ)௤]మଶ and ܿ ଶ = [√ఈାඥ(ఘିଵ)௤]మଶ .

We can further prove that ܿଵ < [ఈି(ఘିଵ)௤]మଶఈ and ܿଶ > ௣௘௥௣ௌ௉଺ିଶߨ߂ ,ଵ, and so both roots are outside this region. Henceܥ < 0, meaning that the

perpetual software vendor prefers SP2. We conclude that when ܿ < .ଵ, the final equilibrium is SP2ܥ

Case (2) ܿ > /ௌ௔௔ௌௌ௉଻ିଶߨ߂∂ ,ଵ. For the SaaS vendorܥ ߙ∂ = ିସ[ఈమା(ఘିఏ)మ௤మ]ଵ଺ఈమ < 0; and ߨ߂ௌ௔௔ௌௌ௉଻ିଶ < 0 at ߙ = ߩ) − ߙ Because in this region all .ݍ(ߠ ≥ ߩ) − ௌ௔௔ௌௌ௉଻ିଶߨ߂ we conclude that ,ݍ(ߠ < 0 in the whole region. Thus, the SaaS vendor always prefers SP2. For the perpetual software

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A21

vendor, ߨ߂௣௘௥௣ௌ௉଻ିଶ = [ఈା(ఘିఏ)௤]మସఈ − ߩ) − ௣௘௥௣ௌ௉଻ିଶߨ߂ We can show that .ݍ(1 = (1 − ݍ(ߠ < 0 at ߙ = ߩ) − in this ߙ which is the smallest ,ݍ(ߠ

region, and that ∂ߨ߂௣௘௥௣ௌ௉଻ିଶ/ ߙ∂ = ସ[ఈା(ఘିఏ)௤][ఈି(ఘିఏ)௤]ଵ଺ఈమ > 0. Solving ߨ߂௣௘௥௣ௌ௉଻ିଶ = 0 for ߙ, we get two solutions: ܣଵ = ߩ) + ߠ − ݍ(2 −2ඥ(ߩ − ߠ)(1 − ଶܣ and ݍ(1 = ߩ) + ߠ − ݍ(2 + 2ඥ(ߩ − ߠ)(1 − ଵܣ Note that .ݍ(1 < ߩ) − ߩ) so it falls outside of the region, and ,ݍ(ߠ + θ ݍ(2− < ଶܣ < ߩ)2 − ߙ so it falls within the region. Therefore, when ,ݍ(1 < ௣௘௥௣ௌ௉଻ିଶߨ߂ ,ଶܣ < 0, meaning that the perpetual software vendor
prefers SP2 and that, in this sub-region, SP2 is the equilibrium outcome. When ߙ		ܣଶ, ߨ߂௣௘௥௣ௌ௉଻ିଶ > 0, meaning that the perpetual software
vendor prefers SP7. The perpetual software vendor thus reduces prices to deviate from SP2 to SP7. We conclude that in this sub-region, SP7
is the equilibrium outcome.

Finally, after combining all the conditions and equilibrium results, we obtain the four equilibria shown in Proposition 9 and Table J1.

Table J1. Parameter Conditions, Prices, and Profits Under Switching Cost Model
(a) Parameter Conditions with Switching Costs
Strategy

Pairs

Regions

Parameter Conditions
SP1 1 ߙ < ߩ) − ݍ(ߠ
SP2 2 (1) ߙ < ߩ) − ;ݍ(ߠ

ߙ (2) ≥ ߩ) − ܿ ,ݍ(ߠ ≥ ଶܥ = [ఈିଶ(ఘିଵ)௤]మ଼ఈ

ߙ 3 ≥ ߩ) − ܿ ,ݍ(ߠ < ଶܥ = [ఈିଶ(ఘିଵ)௤]మ଼ఈ

SP6 4 (ߩ − ݍ(ߠ ≤ ߙ < ߩ) + ߠ − ܿ ,ݍ(2 < [ఈି(ఘିఏ)௤]మ଼ఈ

ߙ 5 ≥ ߩ) + ߠ − ܿ ,ݍ(2 < [ఈି(ఘିఏ)௤]మ଼ఈ

ߩ) (1) 6 − ݍ(ߠ ≤ ߙ < ߩ) + ߠ − ;ݍ(2

ߙ (2) ≥ ߩ) + ߠ − ,ݍ(2
[ఈି(ఘିఏ)௤]మ଼ఈ ≤ c < [ఈି(ఘିఏ)௤]మଶఈ

ߙ 7 > ߩ) + ߠ − ,ݍ(2
[ఈି(ఘିఏ)௤]మ଼ఈ < ܿ < [ఈି(ఘିଵ)௤]మଶఈ

SP7 8 (1)(ߩ − ݍ(ߠ ≤ ߙ < ߩ) + ߠ − ܿ ,ݍ(2 ≥ [ఈି(ఘିఏ)௤]మ଼ఈ ;

ߙ (2) ≥ ߩ) + ߠ − ܿ ,ݍ(2 ≥ ܿ∗
ߙ 9 > ߩ) + ߠ − ,ݍ(2

[ఈି(ఘିఏ)௤]మ଼ఈ ≤ ܿ < ܿ∗ = [ఈା(ఘିఏ)௤]మା[ఈା(ఘାఏିଶ)௤]మ଼ఈ − ߩ) − ݍ(1

ߩ) (1) 10 − ݍ(ߠ ≤ ߙ < ߩ) − ;ݍ(1

ߩ) (2) − ݍ(ߠ ≤ ߙ < ߩ) + ߠ − ,ݍ(2
[ఈି(ఘିଵ)௤]మଶఈ ≤ ܿ < [ఈି(ఘିఏ)௤]మ଼ఈ

ߩ)	(1) 11 − ݍ(1 ≤ ߙ < ߩ) + ߠ − ܿ ,ݍ(2 < [ఈି(ఘିଵ)௤]మଶఈ ;

ߙ (2) ≥ ߩ) + ߠ − ܿ ,ݍ(2 < [ఈି(ఘିఏ)௤]మ଼ఈ

(b) Optimal Prices with Switching Costs
Strategy

Pairs

Regions
 ࢙࢖ ࢔࢖ ࢛࢖

SP1 1 (ߩ − ݍ(ߠ − ఈଶ (ߩ − ݍ(ߠ − ఈଶ —

SP2 2 (ߩ − ߩ) ݍ(1 − ߠ) ݍ(1 − ݍ(1 + 2ߙ

ߩ) 3 − ఈଶ ݍ(1 − ߙ ܿߙ2√ − ߩ) − ݍ(ߠ − ܿߙ2√

SP6 4 [ఈା(ఘିఏ)௤]మ଼ఈ
[ఈା(ఘିఏ)௤]మ଼ఈ

ఈି(ఘିఏ)௤ଶ

 5 (ఘିଵ)௤[ఈି(ఏିଵ)௤]ଶఈ [ఈା(ఘିఏ)௤]మ଼ఈ
ఈି(ఘିఏ)௤ଶ

 6 [ఈି√ଶఈ௖]మଶఈ
[ఈି√ଶఈ௖]మଶఈ ߙ − ߩ) − ݍ(ߠ − ܿߙ2√

 7 (ఘିଵ)௤(ఈି√ଶఈ௖)ఈ − [(ఘିଵ)௤]మଶఈ
[ఈି√ଶఈ௖]మଶఈ ߙ − ߩ) − ݍ(ߠ − ܿߙ2√

SP7 8 [ఈା(ఘିఏ)௤]మ଼ఈ
[ఈା(ఘିఏ)௤]మ଼ఈ

ఈି(ఘିఏ)௤ଶ

ߩ) 9 − ݍ(1 − [ఈା(ఘାఏିଶ)௤]మ଼ఈ + ܿ
[ఈା(ఘିఏ)௤]మ଼ఈ

ఈି(ఘିఏ)௤ଶ

 10 ఈଶ − ܿߙ2√ + ܿ
ఈଶ − ܿߙ2√ + ߙ ܿ − ߩ) − ݍ(ߠ − ܿߙ2√

ߩ) 11 − ݍ(1 − [(ఘିଵ)௤ା√ଶఈ௖]మଶఈ + ܿ
ఈଶ − ܿߙ2√ + ߙ ܿ − ߩ) − ݍ(ߠ − ܿߙ2√

Guo & Ma/Perpetual Software and Software as a Service

A22 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

(c) Optimal Profits with Switching Costs
Strategy

Pairs

Regions
 ࢖࢘ࢋ࢖࣊

 ࡿࢇࢇࡿ࣊
SP1 1 2(ߩ − ݍ(ߠ − — ߙ
SP2 2 (ߩ − ߠ) ݍ(1 − ݍ(1 + ఈଶ

ߩ) 3 − ߙ ݍ(1 − ߩ) − ݍ(ߠ − ܿߙ2√
SP6 4 [ఈା(ఘିఏ)௤]మସఈ

[ఈି(ఘିఏ)௤]మଶఈ

 5 [ఈା(ఘିఏ)௤]మାସ(ఘିଵ)௤[ఈି(ఏିଵ)௤]଼ఈ
[ఈି(ఘିఏ)௤]మଶఈ

 6 [ఈି√ଶఈ௖]మఈ ߙ]2 − ߩ) − ݍ(ߠ − ߙܿߙ2√[ܿߙ2√

 7 [(ఈି√ଶఈ௖)ାଶ(ఘିଵ)௤](ఈି√ଶఈ௖)ି[(ఘିଵ)௤]మଶఈ ߙ]2 − ߩ) − ݍ(ߠ − ߙܿߙ2√[ܿߙ2√

SP7 8 [ఈା(ఘିఏ)௤]మସఈ
[ఈି(ఘିఏ)௤]మସఈ

ߩ) 9 − ݍ(1 + ܿ + ఈା(ఘାఏିଶ)௤ସఈ [ఈି(ఘିఏ)௤]మସఈ

ߙ 10 − ܿߙ2√2 + ߙ] 2ܿ − ߩ) − ݍ(ߠ − ߙܿߙ2√[ܿߙ2√

ߠ) 11 − ݍ(1 + ߙ − [(ఘିଵ)௤ା√ଶఈ௖]మଶఈ − ܿߙ2√ + ߙ] ܿ − ߩ) − ݍ(ߠ − ߙܿߙ2√[ܿߙ2√

Appendix K

Continuous NG User Arrival Model

We extend our model to account for NG users’ continuous arrival time. We still focus on the vendors' price competition on the planning
horizon [0,1]. The model setup is the same as the baseline model, except that we assume the NG users with mass 1 uniformly and continuously
enter the market on the time interval [0,1]. Upon arrival, each NG user makes the software adoption decision for a limited use period, which
is normalized to 1. Thus, users who arrive at ݐ < 1 make a decision based on their expected utility from the software use in the period [ݐ, 1 .We use this model setup for several reasons. First, a decision period of the same length provides a fair comparison among all users .[ݐ+
Second, the rapid technological obsolescence makes the software value in the far distant future negligible. To cope with the late arrival users’
decision making in the extended time period beyond ݐ = 1, we assume that the SaaS software quality continues to increase at rate ߙ after
time 1. And at ݐ = 1, the perpetual software vendor releases another “newer” software version with a higher quality. We assume the quality
improvement between two major software releases remains the same (i.e., (ߩ − Therefore, the “newer” perpetual software’s quality .(ݍ(1
can be calculated as ݍߩ + ߩ) − ݍ(1 = ߩ2) − .The continuous user arrival model is depicted in Figure K1 .ݍ(1

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A23

Figure K1. Software Quality Improvement Over Time

In such a dynamic market environment, the installed user base for a software product continues to change. Users who arrive at different times
face different expected network values based on both the current number of users and the anticipated future number of users. Even if the
current network size is observable, forming the expectation of future network growth is cognitively challenging because it depends on future
users’ adoption decisions. We therefore omit the network effect in this continuous arrival model (i.e., ݇ = 0).

All OG users’ strategies are the same as in the baseline model in the “User Utility Definition and Strategy Analysis” section of the paper. For
each NG user with arrival time ݐ < 1, we note five possible strategies.

New: The user purchases the new perpetual software at price ݌௡ at time ݐ and uses it over the entire period [ݐ, 1 + ݍߩ The utility is .[ݐ − .௡݌

New+Newer: The user purchases the new perpetual software at price ݌௡ at time ݐ, uses it in [ݐ, 1], and then pays an upgrade price ݌௨ to get
the newer version at time 1 and uses it for the remaining period [1,1 + 1)ݍߩ The utility is .[ݐ − (ݐ − ௡݌ + ߩ2) − ݐݍ(1 − .௨݌

New + SaaS: The user purchases the new perpetual software at price ݌௡ at time ݐ and uses it in [ݐ, ,௦ଷݐ] ௦ଷ]. It switches to SaaS in the periodݐ 1 + ௦ଷݐ)ݍߩ The utility is .[ݐ − (ݐ − ௡݌ + ׬ ݍߠ) + ݐߙ − ଵା௧௧ೞయݐ݀(௦݌ .

SaaS: The user uses the SaaS software over the entire period [ݐ, 1 + ׬ The utility is .[ݐ ݍߠ) + ݐߙ − ଵା௧௧ݐ݀(௦݌ .

SaaS+Newer: The user uses the SaaS software in the period [ݐ, 1], buys the newer version perpetual software at price ݌௡ at time 1, and uses

this software for the remaining period [1,1 + ׬ The utility is .[ݐ ݍߠ) + ݐߙ − ଵ௧ݐ݀(௦݌ + ߩ2) − ݐݍ(1 − .௡݌

Following a similar notion as in the baseline model, we solve this continuous user arrival model for equilibrium outcomes. The complete
result derivation and proof is attached at the end of this appendix. We summarize our findings as follows.

Proposition 10 (Equilibria with NG User Continuous Arrival) If NG users continuously arrive in the market, the SaaS quality improvement
rate ߙ affects the equilibrium outcome as follows.

(a) (Entry Deterrence Equilibrium) If ߙ ≤ ߩ) − ߠ2 + :the perpetual software vendor deters the SaaS vendor’s entry into the market ,ݍ(1
The equilibrium user strategy is SP1 (Upgrade, New), where the OG users upgrade and all NG users adopt the new perpetual software. The
perpetual software vendor’s equilibrium prices are ݌௨∗ = ∗௡݌ = ߩ) − ݍ(ߠ − ఈଶ.

(b) (Market Segmentation Equilibrium) If (ߩ − ߠ2 + ݍ(1 < ߙ ≤ 2)]ݔܽ݉ + ߩ)(2√ − ,ݍ(ߠ ො], the perpetual software vendor and the SaaSߙ
vendor segment the market: The equilibrium user strategy is SP2 (Upgrade, SaaS), where the OG users upgrade to the new perpetual software
and all NG users adopt SaaS. The equilibrium prices are:

Software
quality

Time0

q
θq

θq +2α

1

θq +α

t 1+t

Consumers continuously arrive in [0,1]
and the firm’s planning horizon is [0,1]

Guo & Ma/Perpetual Software and Software as a Service

A24 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

If (ߩ − ߠ2 + ݍ(1 < ߙ ≤ ߩ)2 − ∗௨݌ then ,ݍ(1 = ߩ) − ∗௡݌ ,ݍ(1 = ߩ) − ∗௦݌ and ݍ(1 = ߠ) − ݍ(1 + ఈଶ;

If 2(ߩ − ݍ(1 < ߙ ≤ 2)]ݔܽ݉ + ߩ)(2√ − ,ݍ(ߠ ∗௨݌ ො], thenߙ = ߩ) − ∗௡݌ ,ݍ(1 = ఈଶ and ݌௦∗ = ߙ − ߩ) − .ݍ(ߠ

(c) (Sequential Dominance Equilibrium) If ߙ > 2)]ݔܽ݉ + ߩ)(2√ − ,ݍ(ߠ :ො], the two vendors serve the market sequentially as followsߙ
During [0, ∗ௌ஽ݐ], the perpetual software vendor serves all OG users and NG users who arrive during this interval. At ݐௌ஽∗ , these users switch
to the SaaS, and in addition, NG users who enter the market in the interval [ݐௌ஽∗ , 1] all choose SaaS during this period. The equilibrium prices
are:
∗௨݌ = (ఘିଵ)௤[ିସఈା(଻ఘିଵ଴ఏାଷ)௤ାଶඥ[ఈା(ఘିఏ)௤]మାଵଶఈమ]଺ఈ ∗௡݌ , = [ିଶఈାହ(ఘିఏ)௤ାඥ[ఈା(ఘିఏ)௤]మାଵଶఈమ]మଵ଼ఈ , and ݌௦∗ = ିଶ[ఈି(ఘିఏ)௤]ାඥ[ఈା(ఘିఏ)௤]మାଵଶఈమଷ .

Overall, we find that all major insights under the discrete model still hold. When SaaS quality improvement is relatively small, the entry
deterrence equilibrium emerges; when the SaaS quality improvement is high enough, the sequential dominance equilibrium emerges; and
when the SaaS quality improvement is in the intermediate range, the market segmentation equilibrium emerges.

Moreover, we see that both vendors’ optimal prices are the same as in the baseline model under the entry deterrence and market segmentation
equilibria. The user groups they serve are also the same. However, the sequential dominance equilibrium is different. In the baseline model,
the perpetual software vendor might charge an upgrade price that is the same as the new price, while in the continuous arrival setting, it
always gives a price discount to OG users to induce them to upgrade. In addition, we also find that the perpetual vendor’s new price is higher,
the SaaS vendor’s price is lower, and the switching time is later than the prices and switching time in the baseline model. As a result, the
SaaS vendor earns a lower profit.

In summary, when the SaaS quality improvement rate is relatively high, so that sequential dominance equilibrium emerges, the perpetual
software vendor is better off under the continuous arrival model. This outcome occurs mainly because NG users arrive to the market
sequentially. The late arrivals are aware of the perpetual software vendor’s ability to release a newer version software in the future, so they
tend to choose the perpetual software upon arrival to enjoy the lower upgrade price for the future newer version.

Proofs for the Continuous User Arrival Model

Case (1) Entry Deterrence Strategy

Consider the strategy that the perpetual software vendor offers a low enough price to attract all OG users to upgrade to the new software, that
NG users who arrive in the market early prefer New, and that NG users who arrive in the market late also prefer New and then upgrade to
Newer at ݐ = 1. Under this strategy, the SaaS vendor is out of the market, even if it offers ݌௦ = 0.

First, to ensure that the OG users prefer Upgrade rather than Old, we need ݍߩ − ௨݌ ≥ ௨݌ ,that is ;ݍ ≤ ߩ) − To ensure that the OG .(K1) ݍ(1

users prefer Upgrade rather than SaaS even if the SaaS price is 0, we need ݍߩ − ௨݌ ≥ ଵ଴׬ ݍߠ) + ௨݌ ,that is ;ݐ݀(ݐߙ ≤ ߩ) − ݍ(ߠ − ఈଶ (K2). To

ensure that NG users who arrive at ݐ = 0 prefer New rather than SaaS, we need ݍߩ − ௡݌ ≥ ଵ଴׬ ݍߠ) + ௡݌ ,that is ;ݐ݀(ݐߙ ≤ ߩ) − ݍ(ߠ − ఈଶ

(K3). In addition, we also need NG users who arrive at ݐ = 1 to prefer Newer rather than SaaS, so (2ߩ − ݍ(1 − ௡݌ ≥ ݍߠ + ଷଶ ௡݌ ,that is ;ߙ ߩ2)≥ − ߠ − ݍ(1 − ଷఈଶ (K4). We can verify that both (K2) and (K3) are binding.

For NG users who arrive at ݐ > 0, they might prefer New+Newer rather than New. The indifference user’s entry time is determined by ݍߩ ௡݌− = 1)ݍߩ − (௖ݐ − ௡݌ + ߩ2) − ௖ݐݍ(1 − ௖ݐ ,௨; that is݌ = ௣ೠ(ఘିଵ)௤. The perpetual software vendor's profit over [0,1] is ݌௨ + p௡. The first term

is the profit from OG users, and the second term is the profit from NG users. Note that the perpetual software vendor generates the Upgrade
profit from New+Newer users at ݐ = 1. This profit is not counted toward the profit calculation in this software life cycle. Because the profit

function increases in ݌௨, and note that (ߩ − ݍ(1 > ߩ) − ݍ(ߠ − ఈଶ, we have ݌௨∗ = ∗௡݌ = ߩ) − ݍ(ߠ − ఈଶ, ݐ௖∗ = (ఘିఏ)௤ିమഀ(ఘିଵ)௤ , and ߨ௣௘௥௣ா஽ = ߩ)2 ݍ(ߠ− − ߙ Note that the condition for entry deterrence equilibrium is .ߙ ≤ ߩ)2 − .ݍ(ߠ

Case (2) Market Segmentation Strategy

Consider the strategy in which the perpetual software vendor allows an SaaS vendor to enter into the market. Because OG users are more
sticky than NG users, the perpetual software vendor, in giving up the NG users, charges ݌௨∗ = ߩ) − to fully extract the surplus from OG ݍ(1

Guo & Ma/Perpetual Software and Software as a Service

MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018 A25

users. So the perpetual software vendor serves the OG users on the interval [0,1], and the SaaS vendor serves all NG users on the interval [0,1]. Comparing this strategy with the entry deterrence strategy, the SaaS vendor charges a positive ݌௦.

To ensure that the OG users choose Upgrade rather than SaaS, we need ݍߩ − ௨݌ ≥ ଵ଴׬ ݍߠ) + ݐߙ − ௦݌ So .ݐ݀(௦݌ ≥ ௨݌ − ߩ) − ݍ(ߠ + ఈଶ (K5).

Substituting ݌௨ெௌ into (K5), we have ݌௦∗ ≥ ߠ) − ݍ(1 + ఈଶ. To prevent the OG users from switching to SaaS during their lifetime use, we need ݍߠ + ݐߙ − ௦݌ ≤ ௦݌ ,that is ;ݍߩ ≥ ߙ − ߩ) − ݐ To ensure that the NG users who arrive at .(K6) ݍ(ߠ = 0 prefer SaaS rather than New, we need ׬ଵ଴ ݍߠ) + ݐߙ − ݐ݀(௦݌ ≥ ݍߩ − ௡݌ ,௡; that is݌ ≥ ߩ) − ݍ(ߠ + ௦݌ − ఈଶ (K7). The perpetual software vendor can price the new software at a

relatively high price, such that the SaaS vendor attracts the NG users starting from time 0. Because the SaaS vendor's profit is ݌௦ ଵ଴׬ ,ݐ݀ݐ
which linearly increases in ݌௦, we know that (K7) is binding.

To determine ݌௡, we need SaaS+Newer to be preferred to SaaS; that is, ׬ଵ଴ ݍߠ) + ݐߙ − ݐ݀(௦݌ + ߩ2) − ݐݍ(1 − ௡݌ ଵା୲௧׬ ݍߠ) + ݐߙ − .ݐ݀(௦݌
So ݌௡ ≤ ߩ2)] − 1 − ݍ(ߠ − ߙ + ݐ[ୱ݌ − ఈଶ ௖ݐ we have ݐ ௦ and solving for݌ ଶ. Since (K7) is binding, substituting intoݐ =[(ఘିଵ)௤ିమഀା௣೙]ିට[(ఘିଵ)௤ିమഀା௣೙]మିଶఈ௣೙ఈ . The perpetual software vendor earns profit on the interval [ݐ௖, 1]. It charges ݌௡ as low as possible. So

we have two cases: If ߙ > ߩ)2 − ∗௦݌ then ,ݍ(1 = ߙ − ߩ) − ∗௡݌ and ݍ(ߠ = ఈଶ. The SaaS vendor’s profit is ߨௌ௔௔ௌெௌ = ∗௦݌ ଵ଴׬ ݐ݀ݐ = (ఏିଵ)௤ଶ + ఈସ. If ߙ ≤ ߩ)2 − ∗௦݌ then ,ݍ(1 = ߠ) − ݍ(1 + ఈଶ and ݌௡∗ = ߩ) − ௌ௔௔ௌெௌߨ The SaaS vendor’s profit is .ݍ(1 = ∗௦݌ ଵ଴׬ ݐ݀ݐ = ఈି(ఘିఏ)௤ଶ . Under both cases, ݌௨∗ = ߩ) − ௣௘௥௣ெௌߨ and ݍ(1 = ߩ) − .ݍ(1

Case (3) Sequential Dominance Strategy

We focus on the two firms’ competitive equilibrium. Assume that OG users choose Upgrade+SaaS and NG users choose New+SaaS. Again,

the switching time is determined by ݍߠ + ௦ଷݐߙ − ௦݌ = ௦ଷݐ ,that is ;ݍߩ = ௣ೞା(ఘିఏ)௤ఈ . At ݐ = 0, the OG users prefer Upgrade+SaaS rather than

Upgrade if ݐݍߩ௦ଷ − ௨݌ + ଵ௧ೞయ׬ ݍߠ) + ݐߙ − ݐ݀(௦݌ ≥ ݍߩ − ௦݌ ௨, which holds when݌ ≤ ߙ − ߩ) − Similarly, any NG user who arrives at .ݍ(ߠ

time ݐ < ௦ଷݐ)ݍߩ ௦ଷ prefers New+SaaS rather than New ifݐ − (ݐ − ௡݌ + ଵା୲௧ೞయ׬ ݍߠ) + ݐߙ − ݐ݀(௦݌ ≥ ݍߩ − ݐ ௡; at݌ = 0, this condition gives ݌௦ ≤ ߙ − ߩ) − .ݍ(ߠ

The SaaS vendor’s profit is expressed as ݌௦(1 − (௦ଷݐ + ௦ଷ(1ݐ௦݌ − (௦ଷݐ + ௦݌ ଵ௧ೞయ׬ (1 − ݐ݀(ݐ = ௣ೞ(ଵି௧ೞయ)(ଷା௧ೞయ)ଶ . Note that the computation of

profit is different for the two groups of users. The first term is the profit from OG users who switch to SaaS at ݐ௦ଷ; the second term is the
profit from the early arrival NG users (i.e., arrivals before ݐ௦ଷ) who switch to SaaS at ݐ௦ଷ; the third term is the integral of all NG users who

arrive after ݐ௦ଷ so they choose SaaS directly. Solving this optimization problem we have ݌௦∗ = ିଶ[ఈି(ఘିఏ)௤]ାඥ[ఈା(ఘିఏ)௤]మାଵଶఈమଷ . We can verify

that ݌௦∗ is an interior solution if ߙ > (2 + ߩ)(2√ − ௦ଷ, we get the switching time in the sequentialݐ ௦∗ into the expression of݌ Substituting .ݍ(ߠ

dominance equilibrium ݐௌ஽∗ = ିଶఈାହ(ఘିఏ)௤ାඥ[ఈା(ఘିఏ)௤]మାଵଶఈమଷఈ < 1. We can verify that ݐௌ஽∗ > 0 under the condition ߙ ≥ ߩ) − At the .ݍ(ߠ

boundary solution ݌௦ = ߙ − ߩ) − ∗ௌ஽ݐ ,ݍ(ߠ = 1, so (Upgrade+SaaS, New+SaaS) does not sustain as an equilibrium SP.

To ensure that OG users prefer Upgrade+SaaS rather than Old+SaaS, we need ݐݍߩ௦ଶ − ௨݌ + ଵ௧ೞమ׬ ݍߠ) + ݐߙ − ݐ݀(௦݌ ≥ ௦ଵݐݍ + ଵ௧ೞభ׬ ݍߠ) ݐߙ+ − ௦ଶݐ where ,ݐ݀(௦݌ = ௦ଵݐ ௦ଷ andݐ = ௣ೞି(ఏିଵ)௤ఈ is the switching time for OG users when they choose Old+SaaS; that is, ݌௨ ≤(ఘିଵ)௤[ଶ௣ೞା(ఘିଶఏାଵ)௤]ଶఈ (K8). Because the OG users are more sticky than the NG users, if the OG users prefer Upgrade+SaaS, then the NG

users who arrive at ݐ = 0 also prefer New+SaaS. Any NG user arriving before ݐ௦ଷ prefers New+SaaS rather than SaaS if ݐ)ݍߩ௦ଷ − (ݐ − ௡݌ ଵା୲௧ೞయ׬+ ݍߠ) + ݐߙ − ݐ݀(௦݌ ≥ ଵା୲௧׬ ݍߠ) + ݐߙ − ௡݌ Simplifying the conditions, we have .ݐ݀(௦݌ ≤ [(ఘିఏ)௤ା௣ೞ]మଶఈ (K9). When ݐ > ’௦ଷ, NG usersݐ

two strategies, SaaS+Newer and SaaS, are equivalent in the analysis because in the current planning period [0,1], the perpetual software
vendor’s profit for the newer version is not counted and the SaaS vendor's profit is the same.

Substituting ݌௦∗ into (K9) we have ݌௡∗ = [ିଶఈାହ(ఘିఏ)௤ାඥ[ఈା(ఘିఏ)௤]మାଵଶఈమ]మଵ଼ఈ . By (K8), ݌௨∗ = (ఘିଵ)௤[ିସఈା(଻ఘିଵ଴ఏାଷ)௤ାଶඥ[ఈା(ఘିఏ)௤]మାଵଶఈమ]଺ఈ . Note

that the perpetual software vendor prices satisfy ݌௨∗ < ∗௡݌ . The perpetual software vendor's profit is ߨ௣௘௥௣ௌ஽ = ∗௨݌ + ∗ௌ஽ݐ∗௡݌ , and the SaaS

vendor's profit is ߨௌ௔௔ௌௌ஽ = ௣ೞ∗(ଵି௧ೄವ∗)(ଷା௧ೄವ∗)ଶ .

In summary, the three equilibria occur in different ranges defined by ߙ. Comparing the vendors’ equilibrium profits under different ߙ regions,
we can derive the final equilibrium outcome presented in Table K1. For example, in the most complicated case, when ߙ > (2 + ߩ)(2√ −

Guo & Ma/Perpetual Software and Software as a Service

A26 MIS Quarterly Vol. 42 No. 1‒Appendix/March 2018

௣௘௥௣ௌ஽ߨ both market segmentation and sequential dominance are possible equilibria. Note that ,ݍ(ߠ increases in ߙ, but ߨ௣௘௥௣ெௌ is independent of ߙ. A threshold ߙො must exist such that ߨ௣௘௥௣ௌ஽ > ௣௘௥௣ெௌߨ . Therefore, if ߙ ≥ max[(2 + ߩ)(2√ − ,ݍ(ߠ ො], sequential dominance emerges as theߙ
final market equilibrium outcome.

Table K1. Equilibrium Prices and Profits Under User Continuous Arrival Model
(a) Equilibrium Prices with User Continuous Arrival

Region ࢖∗࢛ ∗࢔࢖ ࢙∗࢖
i (ߩ − ݍ(ߠ − ఈଶ (ߩ − ݍ(ߠ − ఈଶ 0

ii (ߩ − ߩ) ݍ(1 − ߠ) ݍ(1 − ݍ(1 + ఈଶ

iii (ߩ − ݍ(1
ఈଶ ߙ − ߩ) − ݍ(ߠ

iv (ఘିଵ)௤[ିସఈା(଻ఘିଵ଴ఏାଷ)௤ାଶඥ[ఈା(ఘିఏ)௤]మାଵଶఈమ]଺ఈ
[ିଶఈାହ(ఘିఏ)௤ାඥ[ఈା(ఘିఏ)௤]మାଵଶఈమ]మଵ଼ఈ ߙ]2− − ߩ) − [ݍ(ߠ + ඥ[ߙ + ߩ) − ଶ[ݍ(ߠ + ଶ3ߙ12

(b) Equilibrium Prices with User Continuous Arrival Model
Region Condition Equilibrium ࣊࢖࢘ࢋ࢖∗ ∗ࡿࢇࢇࡿ࣊

i ߙ ≤ ߩ) − ߠ2 + ߩ)Entry Deterrence 2 ݍ(1 − ݍ(ߠ − 0 ߙ
ii (ߩ − ߠ2 + ݍ(1 < ߙ ≤ ߩ)2 − ߩ) Market Segmentation ݍ(1 − ݍ(1

(ఏିଵ)௤ଶ + ఈସ

iii 2(ߩ − ݍ(1 < ߙ ≤ max[(2 ߩ)(2√+ − ,ݍ(ߠ ො] Market Segmentation [ఈାଶ(ఘିఏ)௤]మ[ହఈାସ(ఘିఏ)௤]ହସఈమߙ ߙ]2 − ߩ) − ߙଶ[4[ݍ(ߠ − ߩ) − ଶߙ27[ݍ(ߠ

iv ߙ > max[(2 + ߩ)(2√ − ,ݍ(ߠ ො] Sequentialߙ
Dominance

∗௨݌ + ∗ௌ஽ݐ∗௡݌
௣ೞ∗(ଵି௧ೄವ∗)(ଷି௧ೄವ∗)ଶ

