Identity Management and Tradable Reputation

Hong Xu

School of Business and Management, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, HONG KONG \{hxu@ust.hk\}

Jianqing Chen
Jindal School of Management, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080 U.S.A. \{chenjq@utdallas.edu\}

Andrew B. Whinston

McCombs School of Business, The University of Texas at Austin, 2110 Speedway B6000, Austin, TX 78705 U.S.A. \{abw@uts.cc.utexas.edu\}

Appendix A

A. 1 Proof of Propositions 1 and 2

We first analyze the incentive compatibility condition for low types. Notice that the objective for a low-type agent deviating to purchasing a good reputation is formulated in Equation (9). The first-order condition of Equation (9) is $\alpha w_{h}-2 k_{l} w_{l}^{\prime}+\beta p_{g b} v_{d}=0$, which leads to the deviating effort as $w_{l}^{\prime}=w_{h} k_{h} / k_{l}$. The deviating profit and equilibrium profit for low types become

$$
\begin{gathered}
\pi_{l}^{\prime}=k_{l} \frac{k_{h}^{2}}{k_{l}^{2}}\left(\beta f_{h} v_{d}\right)^{2}+(1-\alpha) \beta f_{h} v_{d}+\beta\left[\left(1-p_{g b}\right) v_{g}+p_{g b} v_{b}\right]-v_{g} \\
\pi_{l}=k_{l}\left(\beta f_{l} v_{d}\right)^{2}+(1-\alpha) \beta f_{l} v_{d}+\beta v_{b}-v_{b}
\end{gathered}
$$

Incentive compatibility for low types requires $\pi_{l}^{\prime} \leq \pi_{l}$, which is equivalent to

$$
k_{l}\left(\frac{k_{h}^{2}}{k_{l}^{2}} f_{h}^{2}-f_{l}^{2}\right) \beta^{2} v_{d}^{2}+(1-\alpha)\left(f_{h}-f_{l}\right) \beta v_{d}+\left(\beta\left(1-p_{g b}\right)-1\right) v_{d} \leq 0
$$

Dividing both sides by v_{d}, we can reorganize the condition as $M_{2} \beta v_{d} \leq k_{l} M_{1}$, where

$$
\begin{gathered}
M_{1}=1-\beta\left(1-p_{g b}\right)-(1-\alpha) \beta\left(f_{h}-f_{l}\right) \\
M_{2}=\beta\left[\left(k_{h} f_{h}\right)^{2}-\left(k_{l} f_{l}\right)^{2}\right]
\end{gathered}
$$

Similarly, we can establish that $w_{h}^{\prime}=w_{l} k_{l} / k_{h}$. The corresponding deviating profit and equilibrium profit for high types are

$$
\begin{gathered}
\pi_{h}^{\prime}=k_{h} \frac{k_{l}^{2}}{k_{h}^{2}}\left(\beta f_{l} v_{d}\right)^{2}+(1-\alpha) \beta f_{l} v_{d}+\beta v_{b}-v_{b} \\
\pi_{h}=k_{h}\left(\beta f_{h} v_{d}\right)^{2}+(1-\alpha) \beta f_{h} v_{d}+\beta\left[\left(1-p_{g b}\right) v_{g}+p_{g b} v_{b}\right]-v_{g}
\end{gathered}
$$

Incentive compatibility condition for high types requires $\pi_{h}^{\prime} \leq \pi_{h}$, which is equivalent to

$$
k_{h}\left(f_{h}^{2}-f_{l}^{2} k_{l}^{2} / k_{h}^{2}\right) \beta^{2} v_{d}^{2}+(1-\alpha)\left(f_{h}-f_{l}\right) \beta v_{d}+\left(\beta\left(1-p_{g b}\right)-1\right) v_{d} \geq 0
$$

Further simplify the above by dividing both sides with v_{d}, and we have the condition as $M_{2} \beta v_{d} \geq k_{h} M_{1}$.
Combining the two IC conditions leads to $k_{h} M_{1} \leq M_{2} \beta v_{d} \leq k_{l} M_{1}$. We first show that $M_{1}>0$. To see this, notice the equivalent condition is $\beta<1 /\left[1-p_{g b}+(1-\alpha)\left(f_{h}-f_{l}\right)\right]$, where the right-hand side is greater than 1. Furthermore, the sign of M_{2} is consistent with $k_{h} f_{h}-k_{l} f_{l}$. Therefore, if $k_{h} f_{h}-k_{l} f_{l}$, or, equivalently, if $p_{g b} / p_{b g}<k_{l}\left(2 k_{h}-\alpha\right) /\left[k_{h}\left(2 k_{l}-\alpha\right)\right]$, then $M_{2}<0$ and thus no separating equilibrium can be sustained, which proves the result in Proposition 1(b). Part (a) is a special case of Part (b) with $\alpha=0$.

We next focus on a strict reputation system with $k_{h} f_{h}>k_{l} f_{l}$ such that both M_{1} and M_{2} are positive. We substitute in $v_{d}=\lambda_{h} p_{g b} /\left(\beta \lambda_{l} p_{b g} f_{l}+\right.$ $\beta \lambda_{h} p_{g b} f_{h}$) to reorganize the IC conditions as

$$
\frac{M_{2}}{k_{l} M_{1}} \leq \frac{\lambda_{l}}{\lambda_{h}} \frac{p_{b g}}{p_{g b}} f_{l}+f_{h} \leq \frac{M_{2}}{k_{h} M_{1}}
$$

Define $\underline{\lambda}$ and $\bar{\lambda}$ as the values of $\lambda_{l} / \lambda_{h}$, that make the two IC conditions binding; that is, $\pi_{l}^{\prime}=\pi_{l}$ and $\pi_{h}^{\prime}=\pi_{h}$. We can derive $\underline{\lambda}$ as in Equation (12) and $\bar{\lambda}$ as in the proposition. For any separating equilibrium that satisfies the above condition, the corresponding proportion ratio $\lambda_{l} / \lambda_{h}$ must be between $\underline{\lambda}$ and $\bar{\lambda}$; that is, $\underline{\lambda} \leq \lambda_{l} / \lambda_{h} \leq \bar{\lambda}$. Furthermore, in order to find a λ that satisfies the above conditions, it suffices to show that $\left(p_{g b} M_{2}\right) /\left(k_{h} M_{1}\right) \geq\left(p_{g b} M_{1}\right) /\left(k_{h} M_{1}\right)$ and $M_{1} /\left(k_{h} M_{1}\right)>f_{h}$. The first condition is apparently true, and the second condition can be simplified as

$$
\beta>\underline{\beta}=\frac{f_{h} k_{h}}{\left[\left(k_{h} f_{h}\right)^{2}-\left(k_{l} f_{l}\right)^{2}\right]+\left(1+p_{g b}\right) f_{h} k_{h}+(1-\alpha)\left(f_{h}-f_{l}\right) f_{h} k_{h}}
$$

In addition, because $\beta \in[0,1]$, a separating equilibrium requires $\left[\left(k_{h} f_{h}\right)^{2}-\left(k_{l} f_{l}\right)^{2}\right]-p_{g b} f_{h} k_{h}+(1-\alpha)\left(f_{h}-f_{l}\right) f_{h} k_{h} \geq 0$, which can be rewritten as $p_{g b} / p_{b g} \geq \underline{p}$ with \underline{p} as in Equation (10).

Substituting f_{θ} in Equation (7) and v_{d} in Equation (8) into Equations (5) and (6), we can derive w_{θ} as in Equations (13) and (14).

A. 2 Proof of Proposition 3

Notice that $\frac{2 k_{h}-\alpha}{2 k_{l}-\alpha}=1-\frac{2 k_{l}-2 k_{h}}{2 k_{l}-\alpha}$ is decreasing in α. We can verify that the second fraction in \underline{p} (i.e., $\frac{2 k_{l}^{2}}{\sqrt{(1-\alpha)^{2} k_{h}^{2}+4 k_{l}^{2} k_{h}\left(1-k_{h}\right)}-(1-\alpha) k_{h}}$) is also decreasing in α. Therefore, \underline{p} is decreasing in α.

A. 3 Proof of Corollaries 1, 2, and 3

Notice that Equations (13) and (14) can be reorganized as

$$
w_{h}=\frac{\lambda_{h} p_{g b}^{2}\left(2 k_{l}-\alpha\right)}{\lambda_{l} p_{b g}^{2}\left(2 k_{h}-\alpha\right)+\lambda_{h} p_{g b}^{2}\left(2 k_{l}-\alpha\right)} \text { and } w_{l}=\frac{\lambda_{h} p_{b g} p_{g b}\left(2 k_{h}-\alpha\right)}{\lambda_{l} p_{b g}^{2}\left(2 k_{h}-\alpha\right)+\lambda_{h} p_{g b}^{2}\left(2 k_{l}-\alpha\right)}
$$

Proof of Corollary 1: Because $\left(2 k_{h}-\alpha\right) /\left(2 k_{l}-\alpha\right)$ is decreasing in a, it is easy to see that v_{d} increases in α, w_{h} increases in α, and w_{l} decreases in α.

Proof of Corollary 2: It is straightforward to verify that w_{h} increases in $p_{g b} / p_{b g}$. For w_{l}, we take derivative of the denominator with respect to $p_{g b} / p_{b g}$ and obtains $\left(2 k_{l}-\alpha\right) /\left(2 k_{h}-\alpha\right)-\lambda_{l} p_{b g}^{2} /\left(\lambda_{h} p_{g b}^{2}\right)$. When $p_{g b} / p_{b g}>\sqrt{\left(2 k_{h}-\alpha\right) \lambda_{l}} / \sqrt{\left(2 k_{l}-\alpha\right) \lambda_{h}}$, the denominator decreases and w_{l} increases in $p_{g b} / p_{b g}$; otherwise, the denominator increases and w_{l} decreases in $p_{g b} / p_{b g}$.

Proof of Corollary 3: Note that $\lambda_{l} / \lambda_{h}=\lambda_{l} /\left(1-\lambda_{l}\right)$ is increasing in λ_{l}. It follows directly from the expressions of v_{d}, w_{l}, and w_{h} that they are all decreasing in $\lambda_{l} / \lambda_{h}$ and λ_{l}.

A. 4 Proof of Proposition 4

The equilibrium satisfies the following conditions: $w_{b}=\frac{(1-m) \lambda_{h} w_{h b}+\left(1-\lambda_{h}\right) w_{l}}{1-m \lambda_{h}}, w_{h b}=\frac{\alpha w_{b}+\beta p_{b g} v_{d}}{2 k_{h}}, w_{l}=\frac{\alpha w_{b}+\beta p_{b g} v_{d}}{2 k_{l}}, w_{l}=\frac{\beta p_{g b} v_{d}}{2 k_{h}-\alpha}$, and

$$
\begin{equation*}
\lambda_{h} m=\lambda_{h}(1-m) w_{h b} p_{b g}+\left(1-\lambda_{h}\right) w_{l} p_{b g}+\lambda_{h} m\left(1-\left(1-w_{h}\right) p_{g b}\right) \tag{28}
\end{equation*}
$$

The first three equations lead to

$$
\begin{gather*}
w_{b}=\frac{\beta M p_{b g} v_{d}}{1-\alpha M} \tag{29}\\
w_{h b}=\frac{\beta p_{b g} v_{d}}{2 k_{h}(1-\alpha M)} \tag{30}\\
w_{l}=\frac{\beta p_{b g} v_{d}}{2 k_{l}(1-\alpha M)} \tag{31}
\end{gather*}
$$

where $M=\left[(1-m) \lambda_{h} k_{l}+\left(1-\lambda_{h}\right) k_{h}\right] /\left[2\left(1-m \lambda_{h}\right) k_{l} k_{h}\right]$.

High types at good and bad reputations must be indifferent; that is, $\pi_{h}=\pi_{h b}$, which leads to

$$
k_{h}\left(w_{h}^{2}-w_{h b}^{2}\right)+(1-\alpha)\left(w_{h}-w_{b}\right)+\left(\beta\left(1-p_{g b}\right)-1\right) v_{d}=0
$$

Substituting in Equations (29) to (31), v_{d} can be represented as

The equilibrium levels of v_{d} and m can be solved through (28) and (32).
For low types, denote their deviating effort and profit as w_{l}^{\prime} and π_{l}^{\prime}. If they deviate to a good reputation, their incentive can be described through the first-order condition as $\alpha w_{h}-2 k_{t} w_{l}^{\prime}+\beta p_{g b} v_{d}=0$, which leads to $w_{l}^{\prime}=w_{h} k_{h} / k_{l}$. For low types to prefer bad reputations to good reputations, we need $\pi_{l}^{\prime}<\pi_{l}$, or equivalently

$$
k_{l}\left(w_{l}^{2}-w_{l}^{2}\right)+(1-\alpha)\left(w_{h}-w_{b}\right)+\left(\beta\left(1-p_{g b}\right)-1\right) v_{d}<0
$$

Note that $w_{l}^{\prime}=w_{h} k_{h} / k_{l}$ and $w_{l}=w_{h b} k_{h} / k_{l}$, and $k_{h} / k_{l}<1$. The above IC condition holds as long as $w_{l}^{\prime}>w_{l}$, which can be simplified to the condition on $p_{g b} / p_{b g}$ in Proposition 4.

We also need to ensure that $m \in[0.1]$ in equilibrium. First, notice that both M and βv_{d} are decreasing in m. We then rearrange Equation (28) as

$$
\lambda_{h} m\left(1-w_{h}\right) p_{g b}=\lambda_{h}(1-m) w_{h b} p_{b g}+\left(1-\lambda_{h}\right) w_{l} p_{b g}
$$

Note that the left-hand side (LHS) of this equation is increasing in m while the right-hand side (RHS) of the equation is decreasing in m. In order for m to be between 0 and 1, it suffices to show that (1) when $m=0$, LHS $<$ RHS in Equation (28); and (2) when $m=1$, LHS $>$ RHS in Equation (28). When $m=0$, we have $M=\lambda_{h} /\left(2 k_{h}\right)+\left(1-\lambda_{h}\right) /\left(2 k_{l}\right)$, LHS $=0$, and RHS $=p_{b g}^{2} \beta v_{d}\left(\lambda_{h} k_{l}+\left(1-\lambda_{h}\right) k_{h}\right) /\left[2 k_{l} k_{h}(1-\alpha M)\right]$. The condition that RHS $>$ LHS is equivalent to $\beta v_{d}>0$, or $\beta<\beta_{2}$, where β_{2} is defined as in Equation (18). Similarly, when $m=1$, we have $M=1 / 2 k_{l}$, LHS $=\lambda_{h} p_{g b}\left(1-\beta v_{d} p_{g b} /\left(2 k_{h}-\alpha\right)\right)$, and RHS $=\left(1-\lambda_{h}\right) \beta v_{d} p_{b g}^{2} /\left(2 k_{l}-\alpha\right)$. The condition LHS $>$ RHS is equivalent to $\beta v_{d}<\lambda_{h} p_{g b}\left(2 k_{h}-\alpha\right)\left(2 k_{l}-\alpha\right) /\left[\lambda_{h} p_{g b}^{2}\left(2 k_{l}-\alpha\right)+\left(1-\lambda_{h}\right) p_{b g}^{2}\left(2 k_{h}-\alpha\right)\right]$, or $\beta>\beta_{1}$, where β_{1} is defined as in Equation (17). It is easy to show that $\beta_{1}<\beta_{2}$ because

$$
\frac{\lambda_{h} k_{h}\left[\left(\frac{p_{g b}}{2 k_{h}-\alpha}\right)^{2}-\left(\frac{p_{b g}}{2 k_{h}-\frac{k_{h}}{k_{l}} \alpha}\right)^{2}\right]}{\frac{\lambda_{h}}{2 k_{h}-\alpha} p_{g b}^{2}+\frac{1-\lambda_{h}}{2 k_{l}-\alpha} p_{b g}^{2}}>0
$$

In addition, we also need to ensure $\beta_{1}<1$, which leads to condition $\lambda_{l} / \lambda_{h}<\lambda_{1}$ where λ_{1} is defined as in Equation (19).

A. 5 Proof to Proposition 5

The equilibrium satisfies the following conditions: $w_{g}=\frac{\lambda_{h} w_{h}+\left(1-\lambda_{h}\right) n w_{l g}}{\lambda_{h}+\left(1-\lambda_{h}\right) n}, w_{h}=\frac{\alpha w_{g}+\beta p_{g b} v_{d}}{2 k_{h}}, w_{l g}=\frac{\alpha w_{g}+\beta p_{g b} v_{d}}{2 k_{l}}, w_{l}=\frac{\beta p_{b g} v_{d}}{2 k_{l}-\alpha}$, and

$$
\begin{equation*}
\left(1-\lambda_{h}\right)(1-n) w_{l} p_{b g}=\lambda_{h}\left(1-w_{h}\right) p_{g b}+\left(1-\lambda_{h}\right) n\left(1-w_{l g}\right) p_{g b} \tag{33}
\end{equation*}
$$

The first three equations lead to

$$
\begin{equation*}
w_{g}=\frac{\beta p_{g b} v_{d} N}{1-\alpha N} \tag{34}
\end{equation*}
$$

$$
\begin{align*}
& w_{h}=\frac{\beta p_{g b} v_{d}}{2 k_{h}(1-\alpha N)} \tag{35}\\
& w_{l g}=\frac{\beta p_{g b} v_{d}}{2 k_{l}(1-\alpha N)} \tag{36}
\end{align*}
$$

where $N=\left[\lambda_{h} k_{l}+\left(1-\lambda_{h}\right) n k_{h}\right] /\left[2 k_{l} k_{h}\left(\lambda_{h}+\left(1-\lambda_{h}\right) n\right)\right]$.

Low types at good and bad reputations must be indifferent; that is, $\pi_{l}=\pi_{l g}$, which leads to

$$
k_{l}\left(w_{l g}^{2}-w_{l}^{2}\right)+(1-\alpha)\left(w_{g}-w_{l}\right)+\left(\beta\left(1-p_{g b}\right)-1\right) v_{d}=0
$$

We can solve for v_{d} by substituting in Equations (34) to (36) as

$$
\begin{equation*}
\beta v_{d}=\frac{-\frac{1}{\beta}+\left(1-p_{g b}\right)+(1-\alpha)\left(\frac{p_{g b} b}{\frac{1}{N}-\alpha}-\frac{p_{p_{g}}}{2 k_{l}-\alpha}\right)}{k_{l}\left[\left(\frac{p_{b_{b}}}{2 k_{l}-\alpha}\right)^{2}-\left(\frac{p_{g b}}{2 k_{l}(1-\alpha N)}\right)^{2}\right]} \tag{37}
\end{equation*}
$$

The equilibrium level of v_{d} and n are determined by (33) and (37).
For high types, denote their deviating effort and profit as w_{h}^{\prime} and π_{h}^{\prime}. If they deviate to a bad reputation, their incentive can be described through the first-order condition as $\alpha w_{l}-2 k_{h} w_{h}^{\prime}+\beta p_{b g} v_{d}=0$, which leads to $w_{h}^{\prime 2}=k_{l} w_{l} / k_{h}$. For high types to prefer good reputations to bad reputations, we need $\pi_{h}^{\prime}<\pi_{h}$, or equivalently

$$
k_{h}\left(w_{h}^{\prime 2}-w_{h}^{2}\right)+(1-\alpha)\left(w_{l}-w_{g}\right)-\left(\beta\left(1-p_{g b}\right)-1\right) v_{d}<0
$$

Note that $w_{h}^{\prime}=k_{l} w_{l} / k_{h}$ and $w_{h}=k_{l} w_{l g} / k_{h}$, and $k_{l} / k_{h}>1$. The above IC condition holds as long as $w_{h}^{\prime}>w_{h}$, which can be simplified to the condition on $p_{g b} / p_{b g}$ in Proposition 5.

We also need to ensure that in equilibrium $n \in[0,1]$. First, notice that both N and βv_{d} are decreasing in n, which can be verified with simple algebra. We then rearrange Equation (33) as

$$
\begin{equation*}
\left(1-\lambda_{h}\right)(1-n) w_{l} p_{b g}=\lambda_{h}\left(1-w_{h}\right) p_{g b}+\left(1-\lambda_{h}\right) n\left(1-w_{\lg }\right) p_{g b} \tag{38}
\end{equation*}
$$

Notice that the left-hand side of this equation is decreasing in n while the right-hand side is increasing in n. For the equilibrium n to be between 0 and 1, it must satisfy two conditions: (1) when $n=0$, Equation (38) becomes an inequality with the left-hand side (LHS) greater than the right-hand side (RHS); and (2) when $n=1$, Equation (38) becomes an inequality with the left-hand side less than the right-hand side. At $n=$ $0, N=1 /\left(2 k_{h}\right)$, LHS $=\left(1-\lambda_{h}\right) \beta v_{d} p_{b g}^{2} /\left(2 k_{l}-\alpha\right)$, and RHS $=\lambda_{h} p_{g b}\left(2 k_{h}-\alpha-\beta p_{g b} v_{d}\right) /\left(2 k_{h}-\alpha\right)$. The equivalent condition of LHS $>$ RHS is

$$
\beta v_{d}=\frac{-\frac{1}{\beta}+\left(1-p_{g b}\right)+(1-\alpha)\left(\frac{p_{p_{b}}}{2 k_{k}-\alpha}-\frac{p_{p_{k}}}{2 k_{i}-\alpha}\right)}{k_{l}\left[\left(\frac{p_{k_{b}-}}{2 k_{i}-\alpha}\right)^{2}-\left(\frac{p_{g b}}{\left.2 k_{i}-\frac{k_{k} \alpha}{}\right)^{2}}\right)^{2}\right]}>\frac{\lambda_{h} p_{g b}}{\frac{\left(1-\lambda_{h}\right) p_{g}^{2}}{2 k_{l}-\alpha}+\frac{\lambda_{h} p_{g b}^{2}}{2 k_{h}-\alpha}}
$$

Similarly, when $n=1$, then $N=\frac{\lambda_{h}}{2 k_{h}}+\frac{1-\lambda_{h}}{2 k_{l}}, L H S=0$, and $R H S>0$ is equivalent to

$$
\beta v_{d}=\frac{-\frac{1}{\beta}+\left(1-p_{g b}\right)+(1-\alpha)\left(\frac{p_{g b}}{\frac{1}{N}-\alpha}-\frac{p_{k_{b}}}{22_{l}-\alpha}\right)}{k_{l}\left[\left(\frac{p_{b g}}{2 k_{i}-\alpha}\right)^{2}-\left(\frac{p_{g b}}{2 k_{l}(1-\alpha V)}\right)^{2}\right]}<\frac{1}{\left(\frac{\lambda_{h}}{2 k_{h}(1-\alpha V)}+\frac{1-\lambda_{h}}{2 k_{l}(1-\alpha V)}\right) p_{g b}}
$$

The corresponding condition in terms of β becomes $\beta_{3}<\beta<\beta_{4}$, where β_{3} and β_{4} are defined as in Equations (20) and (21). We can verify that $\beta_{3}<\beta_{4}$. In addition, we also need to ensure $\beta_{3}<1$ and $\beta_{4}>0$, for which it suffices to show that $1 / \beta_{3}>1$, or equivalently, $\lambda_{l} / \lambda_{h}>\lambda_{2}$ where λ_{2} is defined as in Equation (22).

A. 6 Proof of Proposition 6

Consider an equilibrium where (1) low types own reputation $j=0$, and high types have all the rest; (2) the reputation value difference is such that $v_{1}-v_{0}=\alpha$, and $v_{j}-v_{j-1}=b$ for $j \geq 2$. The corresponding equilibrium efforts and profits are

$$
\begin{align*}
& w_{0}=\frac{a}{2 k_{l}-\alpha} \\
& \pi_{0}=k_{l} w_{0}^{2}+(1-\alpha) w_{0} \\
& w_{1}=\frac{a+b}{2 k_{h}-\alpha} \tag{39}\\
& \pi_{1}=k_{h} w_{1}^{2}+(1-\alpha) w_{1}-a \\
& w_{j \geq 2}=\frac{2 b}{2 k_{h}-\alpha} \\
& \pi_{j \geq 2}=k_{h} w_{j}^{2}+(1-\alpha) w_{j}-b
\end{align*}
$$

The separating equilibrium has to satisfy the following five conditions.
Condition 1: $\pi_{1}=\pi_{j \geq 2}$, which leads to

$$
\begin{equation*}
a+3 b=\frac{\left(2 k_{h}-1\right)\left(2 k_{h}-\alpha\right)}{k_{h}} \tag{40}
\end{equation*}
$$

Condition 2: the proportion of reputation 0 is $\lambda_{0}=1-\lambda_{h}$.
Condition 3: the proportion of all the other reputations are such that $\lambda_{1}=2\left(2 k_{h}-\alpha\right) \lambda_{0} /\left[\left(2 k_{l}-\alpha\right)\left(2 k_{h}-\alpha\right)-(a+b)\right]$, $\lambda_{2}=(a+b) \lambda_{1} /\left(2 k_{h}-\alpha-2 b\right)$, and $\lambda_{j \geq 3}=2 b \lambda_{j-1} /\left(2 k_{h}-\alpha-2 b\right)$. The aggregate of these proportions must be λ_{h}; that is,

$$
\begin{equation*}
\frac{2 k_{h}-\alpha}{2 k_{l}-\alpha} \frac{2}{\left(2 k_{h}-\alpha\right)-(a+b)} \frac{2 k_{h}-\alpha+a-3 b}{2 k_{h}-\alpha-4 b}=\frac{\lambda_{h}}{1-\lambda_{h}} \tag{41}
\end{equation*}
$$

Condition 4 (ICH): high types prefer $j \geq 1$ to 0 ; that is,

$$
\begin{equation*}
k_{h}\left(\frac{2 b}{2 k_{h}-\alpha}\right)^{2}+(1-\alpha) \frac{2 b}{2 k_{h}-\alpha}-b \geq \frac{k_{l}}{k_{h}}\left[k_{l}\left(\frac{a}{2 k_{l}-\alpha}\right)^{2}+(1-\alpha) \frac{a}{2 k_{l}-\alpha}\right] \tag{42}
\end{equation*}
$$

This is equivalent to $\pi_{h} \geq \pi_{l} k_{l} / k_{h}$.

Condition 5 (ICL): low types prefer 0 to $j \geq 1$; that is,

$$
\begin{equation*}
k_{l}\left(\frac{a}{2 k_{l}-\alpha}\right)^{2}+(1-\alpha) \frac{a}{2 k_{l}-\alpha} \geq \frac{k_{h}}{k_{l}}\left[k_{h}\left(\frac{2 b}{2 k_{h}-\alpha}\right)^{2}+(1-\alpha) \frac{2 b}{2 k_{h}-\alpha}\right]-b \tag{43}
\end{equation*}
$$

which is equivalent to $\pi_{l} \geq \pi_{h} k_{h} / k_{l}-b\left(k_{l}-k_{h}\right) / k_{l}$.

We prove the existence of such an equilibrium in two steps.

Step 1: We want to show that Equation (41) simply moves the equilibrium along the line described by Equation (40). In other words, as λ_{h} $/\left(1-\lambda_{h}\right)$ varies from 0 to ∞, the corresponding variations of a and b cover every single point in Equation (40).

First, substitute Equation (40) into Equation (41) and rewrite the latter as a function of b only:

$$
\lambda=\frac{\lambda_{h}}{1-\lambda_{h}}=\frac{M-3 b}{N-4 b} \frac{N+M-6 b}{N-M+2 b}
$$

where $M=\left(2 k_{h}-\alpha\right)\left(2 k_{h}-1\right) / k_{h}$, and $N=2 k_{h}-\alpha$. Notice that

$$
\frac{\partial \lambda}{\partial b}=\frac{60 N b^{2}+\left(36 N^{2}-20 M N+16 M^{2}\right) b+\left(7 M^{2} N-4 M N^{2}-3 N^{3}-4 M^{3}\right)}{(N-4 b)^{2}(N-M+2 b)^{2}}
$$

and $60 N>0,36 N^{2}-20 M N+16 M^{2}>0$, and $7 M^{2} N-4 M N^{2}-3 N^{3}-4 M^{3}<0$. Hence, λ decreases in b when b is small, and increases in b when b is large.

We also need to check whether Equation (41) itself imposes any restrictions on the variations of b. The only condition that has to be satisfied is $\lambda \geq 0$. Note that, $2 k_{h}-\alpha-(a+b)>0$ is equivalent to $2 b>\left(2 k_{h}-\alpha\right)\left(2 k_{h}-1\right) / k_{h}$, which is always true because $k_{h}-1<0$. Similarly, $2 k_{h}-$ $\alpha-3 b+\alpha \geq 0$ leads to $2 a \geq\left(2 k_{h}-\alpha\right)\left(2 k_{h}-1\right) / k_{h}$, which is also true for all $a \geq 0$. Finally, $2 k_{h}-\alpha-4 b>0$ leads to $b<\left(2 k_{h}-\alpha\right) / 4$, which is equivalent to $a \geq\left(2 k_{h}-\alpha\right)\left(5 k_{h}-4\right) /\left(4 k_{h}\right)$ because $b=\left(2 k_{h}-\alpha\right)\left(2 k_{h}-1\right) /\left(3 k_{h}\right)-a / 3$. Note that, if $k_{h} \leq 4 / 5$, the inequality always holds. Otherwise, Equation (41) imposes the additional condition that $b>\left(2 k_{h}-\alpha\right) / 4$.

So, when $\mathrm{k}_{\mathrm{h}} \leq 4 / 5$, λ first decreases and then increases in b, as b goes up. In this case, every point on the line in (40) can be reached at a certain λ, and we only need to find one point on (40) to demonstrate the existence of separation. When $k_{h}>4 / 5$, λ first decreases and then increases in b, and goes to infinity as b approaches $\left(2 k_{h}-\alpha\right) / 4$. In this case, Equation (41) covers only part of the line in (40); that is, $0 \leq b<\left(2 k_{h}-\alpha\right) / 4$. We need to find a point within this range that satisfies the ICs to show the existence of separation.

Step 2: Reorganizing the ICH and ICL by substituting in $a=M-3 b$, we have

$$
k_{h} b \leq\left(\frac{2 b k_{h}}{2 k_{h}-\alpha}\right)^{2}-\left(\frac{(M-3 b) k_{l}}{2 k_{l}-\alpha}\right)^{2}+(1-\alpha)\left(\frac{2 b k_{h}}{2 k_{h}-\alpha}-\frac{(M-3 b) k_{l}}{2 k_{l}-\alpha}\right) \leq k_{l} b
$$

We denote the middle expression as $T(b)$. Notice that

$$
\frac{\partial T}{\partial b}=\left(\frac{k_{h}}{2 k_{h}-\alpha}\right)^{2} 8 b+\left(\frac{k_{l}}{2 k_{l}-\alpha}\right)^{2} 6(M-3 b)+(1-\alpha)\left(\frac{2 k_{h}}{2 k_{h}-\alpha}-\frac{3 k_{l}}{2 k_{l}-\alpha}\right)>0
$$

It is easy to see $T(0)<0$, and $T(M / 3)>0$. Hence, as long as $T(b=M / 3) \geq k_{h} b$ when $k_{h} \leq 4 / 5$ or $T\left(b=\left(2 k_{h}-\alpha\right) / 4\right)>k_{h} b$ when $k_{h}>4 / 5$, a separation must exist. When $k_{h} \leq 4 / 5$, substituting in $b=M / 3$, we need $\left(\frac{2 b k_{h}}{2 k_{h}-\alpha}\right)^{2}+(1-\alpha) \frac{2 b k_{h}}{2 k_{h}-\alpha}-k_{h} b \geq 0$, which leads to $k_{h} \geq 3 \alpha / 2-1$.
In order for $0 \leq k_{h} \leq 4 / 5, \alpha$ has to satisfy that $2 / 3 \leq \alpha \leq 1$. Therefore, when $2 / 3 \leq \alpha \leq 1$ and $3 \alpha / 2-1 \leq k_{h} \leq 4 / 5$, there exists a separating equilibrium.

