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Appendix A

A.1  Proof of Propositions 1 and 2

We first analyze the incentive compatibility condition for low types.  Notice that the objective for a low-type agent deviating to purchasing
a good reputation is formulated in Equation (9).  The first-order condition of Equation (9) is αwh – 2klwl' + βpgbvd = 0, which leads to the
deviating effort as wĺ  = whkh /kl.  The deviating profit and equilibrium profit for low types become
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Incentive compatibility for low types requires πl' # πl, which is equivalent to
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Dividing both sides by vd, we can reorganize the condition as M2βvd # kl M1, where
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Similarly, we can establish that wh́ = wlkl /kh.  The corresponding deviating profit and equilibrium profit for high types are
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Incentive compatibility condition for high types requires πh́ # πh, which is equivalent to

( ) ( )( ) ( )2 2 2 2 2 2/ 1 (1 ) 1 0h h l l h d h l d gb dk f f k k v f f v p vβ α β β− + − − + − − ≥

Further simplify the above by dividing both sides with vd, and we have the condition as .M v k Md h2 1β ≥

Combining the two IC conditions leads to .  We first show that M1 > 0.  To see this, notice the equivalent conditionk M M v k Mh d l1 2 1≤ ≤β
is β < 1/[1 – pgb + (1 – α)(fh – fl)], where the right-hand side is greater than 1.  Furthermore, the sign of M2 is consistent with kh fh – kl fl. 
Therefore, if kh fh – kl fl, or, equivalently, if pgb /pbg < kl (2kh – α)/[kh (2kl – α)] , then M2 < 0 and thus no separating equilibrium can be sustained,
which proves the result in Proposition 1(b).  Part (a) is a special case of Part (b) with α = 0.

We next focus on a strict reputation system with kh fh > kl fl such that both M1 and M2 are positive.  We substitute in vd = λh pgb /(βλl pbg fl +
βλh pgb fh) to reorganize the IC conditions as
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Define  and  as the values of , that make the two IC conditions binding; that is,  and .  We can derive  as inλ λ λ λl h/ l lπ π′ = ′ =π πh h λ
Equation (12) and  as in the proposition.  For any separating equilibrium that satisfies the above condition, the corresponding proportionλ
ratio  must be between  and ; that is, .  Furthermore, in order to find a λ that satisfies the above conditions,λ λl h/ λ λ λ λ λ λ≤ ≤l h/
it suffices to show that (pgbM2)/(khM1) $ (pgbM1)/(khM1) and M1/(khM1) > fh.  The first condition is apparently true, and the second condition can
be simplified as
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In addition, because β 0 [0, 1], a separating equilibrium requires  , which can be( ) ( ) ( )( )k f k f p f k f f f kh h l l gb h h h l h h
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rewritten as   with  as in Equation (10)./gb bgp p p≥ p

Substituting fθ in Equation (7) and vd in Equation (8) into Equations (5) and (6), we can derive wθ as in Equations (13) and (14).

A.2  Proof of Proposition 3

Notice that  is decreasing in α.  We can verify that the second fraction in  (i.e., ) is
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also decreasing in α.  Therefore,  is decreasing in α.p
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A.3  Proof of Corollaries 1, 2, and 3

Notice that Equations (13) and (14) can be reorganized as
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Proof of Corollary 1:  Because (2kh – α)/(2kl – α) is decreasing in a, it is easy to see that vd increases in α, wh increases in α, and wl decreases
in α.

Proof of Corollary 2:  It is straightforward to verify that wh increases in pgb / pbg.  For wl, we take derivative of the denominator with respect

to pgb /pbg and obtains    When the denominator decreases( ) / ( ) / ( ).2 2 2 2k k p pl h l bg h gb− − −α α λ λ p p k kgb bg h l l h/ ( ) / ( ) ,> − −2 2α λ α λ

and wl increases in pgb / pbg; otherwise, the denominator increases and wl decreases in pgb / pbg.

Proof of Corollary 3:  Note that λl / λh = λl /(1 – λl) is increasing in λl.  It follows directly from the expressions of vd, wl, and wh that they are all
decreasing in λl / λh and λl.

A.4  Proof of Proposition 4

The equilibrium satisfies the following conditions:  , , , , and
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The first three equations lead to 
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where .M m k k m k kh l h h h l h= − + − −[( ) ( ) ] / [ ( ) ]1 1 2 1λ λ λ

High types at good and bad reputations must be indifferent; that is, πh = πhb, which leads to

( ) ( )( ) ( )( )k w w w w p vh h hb h b gb d
2 2 1 1 1 0− + − − + − − =α β

Substituting in Equations (29) to (31), vd can be represented as
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The equilibrium levels of vd  and m can be solved through (28) and (32).

For low types, denote their deviating effort and profit as wl'  and πl'.  If they deviate to a good reputation, their incentive can be described through
the first-order condition as αwh – 2ktwl' + βpgbvd = 0, which leads to wl'  = whkh /kl.  For low types to prefer bad reputations to good reputations,
we need , or equivalentlyl lπ π′ <

( )2 2( ) (1 )( ) (1 ) 1 0l l l h b gb dk w w w w p vα β′ − + − − + − − <

Note that wl' = wh kh / kl  and wl = whbkh / kl , and  kh / kl < 1.  The above IC condition holds as long as wl' > wl, which can be simplified to the
condition on pgb / pbg  in Proposition 4.

We also need to ensure that m 0 [0. 1] in equilibrium.  First, notice that both M and βvd are decreasing in m.  We then rearrange Equation (28)
as

( ) ( ) ( )λ λ λh h gb h hb bg h l bgm w p m w p w p1 1 1− = − + −

Note that the left-hand side (LHS) of this equation is increasing in m while the right-hand side (RHS) of the equation is decreasing in m.  In
order for m to be between 0 and 1, it suffices to show that (1) when m = 0, LHS < RHS in Equation (28); and (2) when m = 1, LHS > RHS in

Equation (28).  When m = 0, we have , LHS = 0, and  RHS = . M k kh h h l= + −λ λ/ ( ) ( ) / ( )2 1 2 p v k k k k Mbg d h l h h l h
2 1 2 1β λ λ α( ( ) ) / [ ( )]+ − −

The condition that RHS > LHS  is equivalent to βvd > 0, or β < β2, where β2 is defined as in Equation (18).  Similarly, when m = 1, we have
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In addition, we also need to ensure β1 < 1, which leads to condition λl / λh < λ1 where λ1 is defined as in Equation (19).

A.5  Proof to Proposition 5

The equilibrium satisfies the following conditions:  , , , , and
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Low types at good and bad reputations must be indifferent; that is, πl = πlg, which leads to 
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We can solve for vd by substituting in Equations (34) to (36) as 
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The equilibrium level of vd  and n are determined by (33) and (37).

For high types, denote their deviating effort and profit as  wh' and πh'.  If they deviate to a bad reputation, their incentive can be described through
the first-order condition as αwl – 2khwh' + βpbgvd = 0, which leads to wh'

2 = klwl / kh.  For high types to prefer good reputations to bad reputations,
we need πh' < πh, or equivalently

2 2( ) (1 )( ) ( (1 ) 1) 0h h h l g gb dk w w w w p vα β′ − + − − − − − <

Note that wh' = klwl / kh and wh = klwlg / kh, and kl / kh > 1.  The above IC condition holds as long as wh'  > wh, which can be simplified to the
condition on pgb/pbg  in Proposition 5.

We also need to ensure that in equilibrium n 0 [0, 1].  First, notice that both N and βvd are decreasing in n, which can be verified with simple
algebra.  We then rearrange Equation (33) as
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Notice that the left-hand side of this equation is decreasing in n while the right-hand side is increasing in n.  For the equilibrium n to be between 
0 and 1, it must satisfy two conditions:  (1) when n = 0, Equation (38) becomes an inequality with the left-hand side (LHS) greater than the
right-hand side (RHS); and (2) when n = 1, Equation (38) becomes an inequality with the left-hand side less than the right-hand side.  At n =
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Similarly, when n = 1, then , LHS = 0, and RHS > 0 is equivalent toN h
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The corresponding condition in terms of β becomes β3 < β < β4, where β3  and β4  are defined as in Equations (20) and (21).  We can verify that 
β3 < β4.  In addition, we also need to ensure β3 < 1 and β4 > 0, for which it suffices to show that 1 / β3 > 1, or equivalently, λl / λh  > λ2  where
λ2  is defined as in Equation (22).

A.6  Proof of Proposition 6

Consider an equilibrium where (1) low types own reputation j = 0, and high types have all the rest; (2) the reputation value difference is such
that v1 – v0 = α, and vj – vj –1 = b for j $ 2.  The corresponding equilibrium efforts and profits are 
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The separating equilibrium has to satisfy the following five conditions.

Condition 1:  π1 = πj $ 2, which leads to

(40)
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k
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Condition 2:  the proportion of reputation 0 is λ0 = 1 – λh.

Condition 3:  the proportion of all the other reputations are such that  1 02(2 ) / [(2 )(2 ) ( )],h l hk k k a bλ α λ α α= − − − − +

 and   The aggregate of these proportions must be λh ; that is,λ λ α2 1 2 2= + − −( ) / ( ),a b k bh λ λ αj j hb k b≥ −= − −3 12 2 2/ ( ).
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Condition 4 (ICH):  high types prefer j $ 1 to 0; that is, 
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This is equivalent to π πh l l hk k≥ / .

Condition 5 (ICL):  low types prefer 0 to j $ 1; that is,
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which is equivalent to π πl h h l l h lk k b k k k≥ − −/ ( ) / .

We prove the existence of such an equilibrium in two steps.

Step 1:  We want to show that Equation (41) simply moves the equilibrium along the line described by Equation (40).  In other words, as λh

/ (1 – λh)  varies from 0 to 4, the corresponding variations of a and b cover every single point in Equation (40).

First, substitute Equation (40) into Equation (41) and rewrite the latter as a function of b only:
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where M = (2kh – α)(2kh – 1) / kh , and N = 2kh – α.  Notice that
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60 (36 20 16 ) (7 4 3 4 )
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b N b N M b
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=

and 60N > 0, 36N ² – 20MN + 16M ² > 0, and 7M ²N – 4MN ² – 3N ³ – 4M ³ < 0.  Hence, λ decreases in b when b is small, and increases in  b
when b is large.

We also need to check whether Equation (41) itself imposes any restrictions on the variations of b.  The only condition that has to be satisfied
is λ $ 0.  Note that, 2kh – α – (a + b) > 0 is equivalent to 2b > (2kh – α)(2kh – 1)/kh , which is always true because kh – 1 < 0.  Similarly,  2kh –
α – 3b + α $ 0 leads to 2a $ (2kh – α)(2kh – 1)/kh , which is also true for all a $ 0.  Finally, 2kh – α – 4b > 0 leads to b < (2kh – α)/4, which is
equivalent to a $ (2kh – α)(5kh – 4)/(4kh) because b = (2kh – α)(2kh – 1)/(3kh) – a/3.  Note that, if kh # 4/5, the inequality always holds. 
Otherwise, Equation (41) imposes the additional condition that b > (2kh – α)/4.

So, when kh # 4/5,  λ first decreases and then increases in b, as b goes up.  In this case, every point on the line in (40) can be reached at a certain
λ, and we only need to find one point on (40) to demonstrate the existence of separation.  When kh > 4/5, λ first decreases and then increases
in b, and goes to infinity as b approaches (2kh – α)/4.  In this case, Equation (41) covers only part of the line in (40); that is, 0 # b < (2kh – α)/4. 
We need to find a point within this range that satisfies the ICs to show the existence of separation.

Step 2:  Reorganizing the ICH and ICL by substituting in a = M – 3b, we have 
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We denote the middle expression as T(b).  Notice that
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It is easy to see T(0) < 0, and T(M/3) > 0.  Hence, as long as T(b = M/3) $ khb when kh # 4/5 or T(b = (2kh – α)/4) > khb when kh > 4/5, a

separation must exist.  When kh # 4/5, substituting in b = M/3, we need , which leads to kh $ 3α/2 – 1. ( )2
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In order for  0 # kh # 4/5, α has to satisfy that 2/3 # α # 1.  Therefore, when 2/3 # α # 1 and 3α/2 – 1 # kh # 4/5, there exists a separating
equilibrium.
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