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Appendix 
 
In this appendix we provide mathematical proofs of all lemmas and propositions presented in the paper. It will be useful in what follows to 
have set, as we do now, = [ ] and = [ ].  
Proof of Lemma 1. Let us assume that a contract (∙) is optimal (i.e., it maximizes the client’s expected profit) and that it induces the 
optimal efforts ̃  and ̃  by the vendor. Then the vendor’s problem can be represented as 

 max , 	 [ ( )	|	( , )] − ( ) − ( ) 
 
The first-order conditions (FOCs) for this problem are 
 

 ( ̃ ) = ̃ = ( )	 	( , 	 )̅ ̅ { ̃ , ̃ } (L1.1) 

 

 ( ̃ ) = ̃ = ( )	 	( , 	 )̅ ̅ { ̃ , ̃ } (L1.2) 

 
The FOCs for the vendor’s problem under a linear contract { , } are 
 

 
[ ] =  

 

 
[ ] =  

 
Therefore, equations (L1.1) and (L1.2) can be implemented via a linear contract { , } by setting 
 =	 [ ( )	|	( , )]̅ |( ̃ , ̃ ) 

 

 
Note that the fixed payment T does not affect vendor effort and so can be chosen to make the vendor’s participation constraint tight. Checking 

for second-order conditions (SOCs) under a linear contract yields 
̅ − 1 = −1 < 0. We have thus established the optimality of the linear 

contractual form { , }.  
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Proof of Proposition 1. In the modular tasks case, = ( + ) +  because project outcomes do not depend on the client’s effort ( =0). Having established in Lemma 1 that the linear contract is optimal, in this proof we need attend only to linear contracts (of the form +
). 

Effort choice. The FOCs for the first-best effort level, as defined in equation (4), are ̃ = arg	max [ ( )	|	 , ] − ( ) − ( ) 
 = arg max + [ + ] − − =   (P1.1) 

 
and, similarly,  
 

 ̃ =    (P1.2) 
 

As shown in the proof of Lemma 1, the SOCs for linear contracts are satisfied. Then, by equation (5), [ ( )	|	 ̃ , ̃ ] − ( ̃ ) − ( ̃ ) ≥0. Hence the client will set 	such that [ ( )	|	 ̃ , ̃ ] − ( ̃ ) − ( ̃ ) = 0, thereby making the vendor’s participation constraint tight 
and extracting all the surplus. Therefore, 
 

 + [ 	|	 ̃ , ̃ ] − ( ̃ ) − ( ̃ ) = 0 (P1.3) 
 

From equation (3) it follows that  
 ̃ = arg	max 	 [ ( ̃ , ̃ , )] − ( ) − [ ( )	|	 ̃ , ̃ ] 
 
As a result,  

 ̃ = arg	max 	 [ ̃ + { + (1 − ) } ̃ + ] − − ̃ − ̃ =  (P1.4) 

 

Contract design. According to equation (2), the client’s contract design problem can be stated as 

 
max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ )] 

 
And 
 

max 	Π = [ ̃ + { + (1 − ) } ̃ + ̃ ] − 2̃ − 2̃ − 2̃  

 

since [ ( )	|	( ̃ , ̃ )] = 	 ̃ + ̃
. Substituting the values of ̃ , ̃ , and ̃  from equations (P1.1), (P1.2), and (P1.4) into the contract design 

problem yields 
 

 max 	Π = + { + (1 − ) } + − − −  

 

which is a concave function in . The FOC for the contract design problem gives us = { ( ) }
, and the SOC yields =− [1 + ] < 0. Substituting into the values of ̃ , ̃ , and ̃ , we obtain ̃ = [ { ( ) }

], ̃ = [ [ { ( ) }]], and ̃ = . 

Finally, substituting these efforts into the profit function yields the profits given in Proposition 1. 

 

First-best outcome. From equation (1) in the “Model Description and Assumptions” section, we know that the coordinated solution is ∗ =
, ∗ = [ + (1 − ) ], and ∗ = . We can see that client effort in the SS modular case is ̃ = , which is the coordinated solution. 

For the vendor effort to be first-best, we need 
{ ( ) } = 1 and 

[ { ( ) }] = + (1 − ) . Solving these two equations 

simultaneously gives us that either = 0 or = 1 is both a necessary and sufficient condition for the client to attain the first-best solution 
in the single-sourcing case. 
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Proof of Proposition 2. The client offers the contract { , } to vendor , where  is the variable term of the linear contract and  is fixed. 
The vendors’ optimal efforts are given by 

 ̃ = arg	max 	 [ ( , ̃ )] − ( ) + =  

 ̃ = arg	max 	 [ ( ̃ , )]− ( ) + =  

 
From Equations (10) and (11), which are the individual rationality constraints, we can see that  and  do not affect vendors’ effort 
decisions. Therefore, we can freely adjust these terms to ensure that the vendor participation constraint is tight. Hence we can write 
 = − [ ( ̃ , ̃ )] + 2̃  

 
and 
 = − [ ( ̃ , ̃ )] + 2̃  

 
We can now complete the proof by showing that there exist { , } such that ̃ = ∗ is the unique Nash equilibrium for the vendor’s effort 

decision. Set = 1 and = { ( )}
 It is easy to check that { ∗, ∗} is a Nash equilibrium outcome and also the first-best solution. The 

reason is that vendor ’s FOC is satisfied at ∗ when vendor  chooses ∗. Since in this case the vendors’ effort game is decoupled from client 
effort, we must show that { ∗, ∗} is a unique Nash equilibrium. For that purpose, the Hessian is computed. We can check that 
 

 | | = ( , ) − ( ) ( , )
( , ) ( , ) − ( )  

 =	 −1 00 −1 = 1 > 0 

 

because  
( , ) = ( , ) = ( , ) = 0 and 

( ) = ( ) = −1.Therefore, { ∗, ∗} is a unique Nash equilibrium. Given 

that  and  are set such that no vendor earns a surplus over its reservation value, we conclude that the client can attain the first-best 
outcome for itself. 
 

Proof of Lemma 2. Suppose that a contract (∙) is optimal and that it induces the optimal efforts ̃  and ̃  by the vendor and ̃  by the 
client. Then the FOCs for this vendor’s problem are 

 

 ( ̃ ) = ̃ = ( )	 	( , 	 , )̅ ̅ { ̃ , ̃ , ̃ } (L2.1) 

 

 ( ̃ ) = ̃ = [ ( )	|	( ,	 , )]̅ ̅ { ̃ , ̃ , ̃ } (L2.2) 

 
It follows that either ̃ , ̃ ∈ (0,∞) or ̃ = ̃ = 0. The latter case can easily be implemented by setting = 0; we therefore focus on the 
case ̃ , ̃ ∈ (0,∞), which renders equations (L2.1) and (L2.2) necessary. The FOCs for the vendor’s problem under a linear contract { , } 
are 
 

 
[ ] = ( ) 

 

 
[ ] = ( ) 

 
Therefore, equations (L2.1) and (L2.2) can be implemented via a linear contract { , } by setting 
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 = [ ( )	|	( , , )]̅ { ̃ , ̃ , ̃ } (L2.3) 

 
 

We now examine the client’s effort decision. If ̃ > 0 then, under (∙), the FOC for the client’s effort choice problem is 
 

 
( ̃ , ̃ , ) ̃ − ( )	 	( , , )̅ { ̃ , ̃ , ̃ } = ( ̃ ) = ̃  

 
Under the linear contract { , }, the FOC for the client’s effort choice problem becomes 
 ( , , ) − [ ] = ( ) 

 
A comparison of the two preceding FOCs shows that the value of , as given in equation (L2.3), ensures that the client’s FOC under linear 
contracts is satisfied at ̃ . As in the proof of Lemma 1, > 0; also, < 1 because ̃ ∈ (0,∞). All SOCs are (trivially) met. If ̃ = 0 then, 
under (∙), 
 

 
( ̃ , ̃ , ) ̃ −	 ( )	 	( , , )̅ ̅ { ̃ , ̃ , ̃ } ≤ 0 

 
Under the linear contract { , }, the derivative of the client’s expected profit is 
 ( , , ) − [ ] − (e3) 

 
Substituting the value of  as determined by equation (L2.3) ensures that the client’s effort choice is ̃ = 0. Furthermore, since ̃ = 0 it 
follows that = 1—thus ensuring satisfaction of the sufficient conditions for the linear contract to implement ̃ , ̃ , and ̃ . Because the 
fixed payment  does not affect vendor effort, it can (again) be chosen such that the vendor’s participation constraint is tight. Hence a linear 
contract can replicate the performance of any optimal contract and so is itself optimal. We must now establish that the optimal linear contract’s 
performance cannot yield the client’s first-best result. 
 
Recall that, when tasks are integrated, the VPM = ( + + ) + . 
 

Effort choice. The FOCs for the effort devoted to outsourced tasks, as defined in equation (14), are 

 ̃ = arg	max 	 [ ( )	|	 , , ̃ ] − ( ) − ( ) = arg	max 	 + [ + + ] − − =  (L2.4) 

 
and, similarly,  
 

 ̃ =  (L2.5) 
 

Equation (5) implies that [ ( )	|	 ̃ , ̃ , ̃ ] − ( ̃ ) − ( ̃ ) ≥ 0. Here the client will set  such that [ ( )	|	 ̃ , ̃ , ̃ ] − ( ̃ ) −( ̃ ) = 0, thereby making the vendor’s participation constraint tight and extracting all the surplus. Hence 
 

 + [ ] − ( ̃ ) − ( ̃ ) = 0 (L2.6) 
 
The equality ̃ = arg	max 	 [ ( ̃ , ̃ , )] − ( ) − [ ( )	|	( ̃ , ̃ , )] now follows from equation (13). Therefore,  
 
 ̃ = arg	max 	 [ ̃ + { + (1 − ) } ̃ + { + (1 − ) − } ] − − ̃ − ̃ + ̃ 	= [ + (1 − ) − ]    (L2.7) 

 

Contract design. Equation (12) gives the contract design problem as 

 
 max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ , ̃ )] 
  
and we have 
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 max 	Π = [ ̃ + { + (1 − ) } ̃ + { + (1 − ) } ̃ ] − ̃ − ̃ − ̃
 

 

because [ ( )	|	( ̃ , ̃ , ̃ )] = 	 ̃ + ̃
. Substituting the values of ̃ , ̃ , and ̃  from equations (L2.4), (L2.5), and (L2.7) into the contract 

design problem yields 
 

max 	Π = [ + { + (1 − ) } + { + (1 − ) }{ + (1 − ) − } − { ( ) } − − ] = + { + (1 − ) } + { + (1 − ) }2 − 2 − 2 − 2  

 
which is a concave function in . The FOC for the client’s contract design problem now gives us 
 

 = { ( ) }
 

 
Substituting into the values of ̃ , ̃ , and ̃ , we obtain 
 ̃ = [ { ( ) }], ̃ = [ [ { ( ) }]], and ̃ = [ + (1 − ) − [ { ( ) }]] 

 
First-best outcome. We know that the coordinated solution is ∗ = , ∗ = [ + (1 − ) ], and ∗ = [ + (1 − ) ]. It is clear that 
the first-best efforts can never be achieved, since client effort in the single-sourcing case with integrated tasks is strictly less than the 
coordinated solution. Substituting the value of  in the SS integrated tasks case gives us 
 Π∗ = [{ + (1 − ) }2 + [1 + { + (1 − ) }]2(1 + + ) ] 
 

Proof of Lemma 3. We shall start by proving the optimality of linear contracts. Assume that contracts (∙) for vendor  are optimal and that 
they induce optimal efforts ̃  and ̃  by the vendor and ̃  by the client. Note that if ̃ = 0 for ∈ 1,2 then = 0 trivially implements that 
effort level; as a consequence, we can restrict our focus to ̃ , ̃ ∈ (0,∞). The vendors’ FOCs are 

 

 ( ̃ ) = ̃ = [ ( )	|	( , , )]̅ [ ] { ̃ , ̃ , ̃ } (L3.1) 

 

 ( ̃ ) = ̃ = [ ( )	|	( , , )]̅ [ ] { ̃ , ̃ , ̃ } (L3.2) 

 
and the FOCs for vendors under linear contracts { , } are 
 [ ] = ( ) 
 [ ] = ( ) 
 
Therefore, equations (L3.1) and (L3.2) can be implemented via linear contracts { , } by setting 
 

 = [ ( )	|	( , , )]̅ { ̃ , ̃ , ̃ } (L3.3) 

 
We now check the client’s effort decision. If ̃ > 0 then, under (∙), the FOC for the client’s effort choice problem is 
 

 
[ ( ̃ , ̃ , )] | ̃ − ∑ ( )	 	( , , )̅ ̅ |{ ̃ , ̃ , ̃ } = ( ̃ ) = ̃  
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Under the linear contracts { , }, the FOC for the client’s effort choice problem becomes 
 [ ( , , )] − ( + ) ̅ = ( ) 

 
Comparing these two FOCs reveals that the value of , as determined in equation (L3.3), ensures that the client’s FOC under linear contracts 
is satisfied at ̃ . Just as in the proof of Lemma 1, we have > 0. Also, since ̃ ∈ (0,∞) it follows that + < 1. As before, all SOCs 
are trivially met. If ̃ = 0, then under (∙) we have 
 [ ( ̃ , ̃ , )] 	| ̃ − [ ( )	|	( , , )]̅ ̅ |{ ̃ , ̃ , ̃ } ≤ 0 

 
Under the linear contracts { , }, the derivative of the client’s expected profit is 
 [ ( , , )] − ( + ) ̅ − ( ) 

 
Substituting the value of  as determined in equation (L3.3) ensures that the client’s effort choice is ̃ = 0. Similarly to the proof of 
Lemma 1, we have > 0. Also, since ̃ = 0 it follows that + ≥ 1, thus ensuring that the sufficient conditions for the linear contract 
to implement ̃ , ̃ , and ̃  are satisfied. Finally, the fixed payments  do not affect vendor effort and can therefore be chosen such that the 
vendor participation constraints are tight. So again linear contracts can replicate the result of any optimal contract, which means that linear 
contracts are optimal. 
 
Our next task is to show that the optimal linear contract’s performance cannot be the client’s first-best result. 
 

Effort choice. The FOCs for effort spent on the outsourced tasks, as defined in equations (18) and (19), are 

 
 ̃ = arg	max 	 [ ( )	|	 , ̃ , ̃ ] − ( ) 
 
 ̃ = arg	max 	 [ ( )	|	 ̃ , , ̃ ] − ( ) 
 

 ̃ = arg	max + [ ( + + )] − =   (L3.4) 

 

 ̃ = arg	max 	 + [ ( + + )] − =  (L3.5) 

 
From equations (20) and (21) it follows that [ ( )	|	 ̃ , ̃ , ̃ ] − ( ̃ ) ≥ 0 and [ ( )	|	 ̃ , ̃ , ̃ ] − ( ̃ ) ≥ 0. Hence the client will 
set  and  such that [ ( )	|	 ̃ , ̃ , ̃ ] − ( ̃ ) = 0 and [ ( )	|	 ̃ , ̃ , ̃ ] − ( ̃ ) = 0, thereby making the vendor’s participation 
constraint tight and extracting all the surplus. Then 

 + [ ] − ( ̃ ) = 0 and + [ ] − ( ̃ ) = 0 
 
We can now conclude from equation (17) that  
 ̃ = arg	max 	 [ ( ̃ , ̃ , )] − ( ) −	 [ ( )	|	( ̃ , ̃ , ̃ )] −	 [ ( )	|	( ̃ , ̃ , ̃ )] 
 
Therefore, 
 
 ̃ 	= arg	max 	 [ ̃ + { + (1 − ) } ̃ + { + (1 − ) − ( + )} ] − − ̃ − ̃ + ( + ) ̃ = [ + (1 − ) − ( + )]                                                     (L3.6) 

 

Contract design. According to equation (16), the client’s contract design problem can be stated as 

 
max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ , ̃ )] −	 [ ( )	|	( ̃ , ̃ , ̃ )] 

max , 	Π = [ ̃ + { + (1 − ) } ̃ + { + (1 − ) } ̃ ] − 2̃ − 2̃ − 2̃  
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since [ ( )	|	( ̃ , ̃ , ̃ )] =	 ̃  and [ ( )	|	( ̃ , ̃ , ̃ )] =	 ̃ . Substituting the values of ̃ , ̃ , and ̃  from equations (L3.4)–(L3.6) into 

the contract design problem now gives 
 

max , 	Π = [ + { + (1 − ) } +	{ + (1 − ) }{ + (1 − ) − ( + )} −	{ + (1 − ) − ( + )}2 − 2 − 2 ] 
 
which is a concave function in  and . The FOC for the client’s contract design problem yields the following three cases. 
 

Case (i) If 0 ≤ { + (1 − ) } < , then = 0, = , and Π = { ( ) } + ( ) . 

 
In this case it is easy to see that ̃ = 0, from which it follows that the client does not attain its first-best outcome. 
 

Case (ii) If ≤ { + (1 − ) } < 1 + , then = { ( ) }
, = ( ) { ( ) }

, and Π = [ + { + (1 − ) } + { + (1 − ) }{ + (1 − ) − ( + )} 
 −{ + (1 − ) − ( + )}2 − 2 − 2 ] = { ( ) } + { ( ) } ( )[ { ( ) }]( ) . 

 
Substituting the expressions of  and  into the values of ̃ , ̃ , and ̃ , we obtain 

 ̃ = { ( ) }
, ̃ = [( ) { ( ) } ]

 

 

and ̃ = + (1 − ) − { ( ) } + ( ) { ( ) }
 

 
We know that the coordinated solution is ∗ = , ∗ = [ + (1 − ) ], and ∗ = [ + (1 − ) ]. It is now trivial to deduce that the 
client’s first-best effort in the multisourcing case with integrated tasks is less than in the coordinated solution. 
 

Case (iii) If { + (1 − ) } > 1 + , then = 0, = { ( ) }
, and Π = { ( ) } + [ { ( ) }]( ) . 

 
In this case it trivially follows that ̃ = 0, so again the client does not attain its first-best outcome. 
 

Proof of Proposition 3. We shall compare the profits resulting the single-sourcing and multisourcing strategies when tasks are 
interdependent. 

Single-sourcing. From the proof of Lemma 2 we know that the client’s profit under the SS strategy is 

 Π∗ = [{ + (1 − ) }2 + [1 + { + (1 − ) }]2(1 + + ) ] 
 
By the proof of Lemma 3, the client’s profit under the MS strategy is 
 Π = [ + { + (1 − ) } + { + (1 − ) }{ + (1 − ) − ( + )} −{ + (1 − ) − ( + )}2 − 2 − 2 ] 
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Note that if { + (1 − ) } <  then = 0 and if { + (1 − ) } > 1 +  then = 0. Therefore, under multisourcing we obtain 

the following results: 
 

Case (i) If 0 ≤ { + (1 − ) } < , then = 0, = , and Π = { ( ) } + ( ) . 

 

Case (ii) If ≤ { + (1 − ) } < 1 + , then = { ( ) }
 and = ( ) { ( ) }

 . Hence  Π = [ + { + (1 − ) } + { + (1 − ) }{ + (1 − ) − ( + )} − { ( ) ( )} − − ]  
 = { ( ) } + { ( ) } ( )[ { ( ) }]( ) . 

 

Case (iii) If { + (1 − ) } > 1 + , then = 0, = { ( ) }
, and Π = { ( ) } + [ { ( ) }]( ) . 

 
A numerical comparison of the SS- and MS-based profits under different values of , , and  now yields the results in the proposition. 
(These comparisons are plotted in Figure 2 of the main text.) 

Proof of Proposition 4. Here we consider only the case when tasks are modular. Also, for this proof we normalize  to 1; doing so does not 
affect the analysis because it merely acts as a scaling factor in our model. 

Single-sourcing. We can state the client’s contract problem under SS as follows, where “CE” denotes “certainty equivalent”: 

 
 max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ )] (P4.1) 

 
subject to 
 

 ̃ = arg	max 	 [ ( ̃ , ̃ , )] − ( ) − [ ( )	|	( ̃ , ̃ )], (P4.2) 
 

 ̃ , ̃ = arg	max , 	CE[ ( )	|	( , )] − ( ) − ( ), (P4.3) 
 

 and CE[ ( )	|	( ̃ , ̃ )] − ( ̃ ) − ( ̃ ) ≥ 0. (P4.4) 
 

The client is risk neutral and so takes only the expected value of the contract into account; in contrast, the vendor is risk averse and 
therefore, when making its decisions, accounts instead for the certainty equivalent of the contract. We first use a CARA model to derive the 
form of the certainty equivalent for a risk utility function, in which case the uncertainty  is normally distributed. For the CARA model, ( ) = 1 − , where  is the absolute coefficient of risk aversion. Because the verifiable signal is of the form = + + + , 
we seek the certainty equivalent of a general signal of the type = + . Let CE( ) denote the certainty equivalent of signal . Then 

 

 1 − 	 ( ) = 1 − ( ) √ / 	  

 = 1 − { } √ / 	 5 

 = 1 − 	√ / 	 	 	 	  

 = 1 − 	 	 	√ ( ) /  

 

Yet because 	√ ( ) / = 1, it follows that 

 

 	CE( ) = − 		⟹ 		CE( ) = −  

. 
If tasks are modular, then = ( + ) +  because project outcomes do not depend on client effort ( = 0). We shall focus on linear 
contracts of the form + . 

Effort choice. The FOCs for devoting first-best efforts to the outsourced tasks are 
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 ̃ = arg	max 	CE[ ( )	|	 , ] − ( ) − ( ) = arg	max 	 + [ + ] − 2 − 2 − 2 =  

 
and, similarly, 
 
 ̃ =  
. 
Here the participation constraint is expressed as CE[ ( )	|	 ̃ , ̃ ] − ( ̃ ) − ( ̃ ) ≥ 0 and so the client will set 	such that CE[ ( )	|	 ̃ , ̃ ] − ( ̃ ) − ( ̃ ) = 0, which makes the vendor’s participation constraint tight and also extracts all the surplus. Therefore, 
 

 + [ ] − − ( ̃ ) − ( ̃ ) = 0 and ̃ = arg	max 	 [ ( ̃ , ̃ , )] − ( ) − [ ( )	|	( ̃ , ̃ )] 
 

It follows that  
 ̃ = arg	max 	 ̃ + { + (1 − ) } ̃ + { + (1 − ) } − 2 − 2̃ − 2̃ − 2  = + (1 − )  

 

Contract design. According to equation (P4.1), the contract design problem can be stated as 

 
 max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ )] 
  

 Max 	Π = ̃ + { + (1 − ) } ̃ + { + (1 − ) } ̃ − ̃ − ̃ − ̃ −  

 

since [ ( )	|	( ̃ , ̃ , ̃ )] = 	 ̃ + ̃
. Substituting the values of ̃ , ̃ , and ̃  into the contract design problem then yields 

 
 max 	Π = + { + (1 − ) } + { + (1 − ) }  

 − { ( ) } − − −  

 
which is a concave function in . The FOC for the contract design problem now gives us 
 = 1 + { + (1 − ) }1 + +  

 
and the firm’s profits under SS are given by 
 Π = [ + (1 − ) ]2 + [1 + { + (1 − ) }]2[1 + + ]  

 

Multisourcing. The client’s contract problem in the MS case can be stated as 

 
 max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ )] − [ ( )	|	( ̃ , ̃ )]  (P4.5) 

 
subject to the following conditions: 
 

 ̃ = arg	max 	 [ ( ̃ , ̃ , )] − ( ) − [ ( )	|	( ̃ , ̃ )] − [ ( )	|	( ̃ , ̃ )] (P4.6) 
 

 ̃ = arg	max 	CE[ ( )	|	( , ̃ )] − ( ) (P4.7) 
 

 ̃ = arg	max 	CE[ ( )	|	( ̃ , )] − ( ) (P4.8) 
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 CE[ ( )	|	( ̃ , ̃ )] − ( ̃ ) ≥ 0 (P4.9) 
 

 CE[ ( )	|	( ̃ , ̃ )] − ( ̃ ) ≥ 0 (P4.10) 

 

Effort choice. The FOCs for the first-best efforts on the outsourced tasks are 

 
 ̃ = arg	max 	CE[ ( )	|	 , ̃ ] − ( ) 
 
 ̃ = arg	max 	CE[ ( )	|	 ̃ , ] − ( ) 
 
therefore, 
 

 ̃ = arg	max + ( + ) − − =  

 

 ̃ = arg	max 	 + ( + ) − − =  

 
Here the participation constraints are CE[ ( )	|	 ̃ , ̃ ] − ( ̃ ) ≥ 0 and CE[ ( )	|	 ̃ , ̃ ] − ( ̃ ) ≥ 0. The client will set  and  such 
that CE[ ( )	|	 ̃ , ̃ ] − ( ̃ ) = 0 and CE[ ( )	|	 ̃ , ̃ ] − ( ̃ ) = 0, thus making the vendor’s participation constraint tight and 
extracting all the surplus. Hence 
 + [ ] − − ( ̃ ) = 0 and + [ ] − − ( ̃ ) = 0 

 
from which we conclude that 
 ̃ 	= arg	max 	 [ ( ̃ , ̃ , )] − ( ) −	 [ ( )	|	( ̃ , ̃ )] −	 [ ( )	|	( ̃ , ̃ )] = arg	max 	 ̃ + { + (1 − ) } ̃ + { + (1 − ) }  − 2 − 2̃ − 2̃ − 2 − 2 = + (1 − )  

 

Contract design. The client’s contract design problem is 

 
max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ )] −	 [ ( )	|	( ̃ , ̃ )] 

max , 	Π = ̃ + { + (1 − ) } ̃ + { + (1 − ) } ̃ − 2̃ − 2̃ − 2̃ − 2 − 2  

 

the reason is that [ ( )	|	( ̃ , ̃ )] =	 ̃ +   and [ ( )	|	( ̃ , ̃ )] =	 ̃ + . Substituting the values of ̃ , ̃ , and ̃  into the 

contract design problem now yields 
 

max , 	Π = + { + (1 − ) } + { + (1 − ) }  −{ + (1 − ) }2 − 2 − 2 − 2 − 2  

 

which is a concave function in  and . By the FOC for the contract design problem, =  and = { ( ) }
. We can see that 

the first-best outcomes are not attained under the multisourcing of modular tasks if vendors are risk averse: 
 Π =[ + (1 − ) ]2 + 12(1 + ) + { + (1 − ) }2( + )  

 

Comparing profits from the SS and MS of modular tasks under risk aversion. We are now in a position to compare the profits from 
single-sourcing and multisourcing. Thus, 
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 Π = [ ( ) ] + [ { ( ) }][ ]  and  Π = 	 [ ( ) ] + ( ) + { ( ) }( )  

 
These equations confirm our expectations that SS and MS strategies both have lower profits when vendors are risk averse.  
 
We next compare the relative efficacy of these two sourcing strategies as follows: 
 Π − Π = 12 1(1 + ) + { + (1 − ) }( + ) − [1 + { + (1 − ) }][1 + + ]  

 
Put = { + (1 − ) }. Then the preceding equation can be rewritten as 
 Π − Π = 12 1(1 + ) + ( + ) − [1 + ][1 + + ]  

 
and further simplification yields 
 Π − Π = 12[1 + + ] (1 + ) + ( + ) − 2  

 
From the term in brackets, it trivially follows that there exist > 0 such that Π − Π ≥ 0 for all ≤   and Π − Π < 0 for 

all > . Here  is the positive root of the quadratic equation (with  as the variable) + − 2 = 0. 

 

Proof of Proposition 5. Proving this proposition will require that we compute the optimal efforts of the vendor(s) as a simultaneous effort 
decision, since their costs of coordination depend on the efforts exerted on both tasks. We first compute the first-best efforts with inter-
dependent costs and modular tasks. We normalize = 1 to simplify the calculations; this has no effect on the insights that we derive. 

 

Modular tasks. The coordinated firm solves the problem 

 max , , 	 + { + (1 − ) } + { + (1 − ) } − 2 − 2 − 2 −  

 
This function is concave with respect to effort, as can be verified from the Hessian. The FOCs for the first-best efforts are 
 
 1 = ∗ + ∗,  { + (1 − ) } = ∗ + ∗,  ∗ = { + (1 − ) } 
 
Solving the first two equations simultaneously gives the following coordinated solution: 
 

 ∗ = { ( ) }
,  ∗ = { ( ) }

,  ∗ = { + (1 − ) } 
 
Depending on the relative values of 	and , the coordinated firm may decide to invest in only one of tasks 1 and 2. 
 

Case (i) If 0 < { + (1 − ) } < , then ∗ = 1, ∗ = 0, and ∗ = { + (1 − ) }. 
 

Case (ii) If < { + (1 − ) } < , then ∗ = { ( ) }
, ∗ = { ( ) }

, and ∗ = { + (1 − ) }. In this case, the firm 

invests effort on all three tasks. 
 

Case (iii) If { + (1 − ) } > , then ∗ = 0, ∗ = { + (1 − ) }, and ∗ = { + (1 − ) }. 
 

We now compare the efficacy of single- and multisourcing strategies when interdependent tasks are costly. We first compute vendor effort 
in the SS case. 
 

Single-sourcing. The client’s contract design problem can be stated as 
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max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ )] 

 
subject to 
 
 ̃ = arg	max 	 [ ( ̃ , ̃ , )] − ( ) − [ ( )	|	( ̃ , ̃ )] 
 
 ̃ , ̃ = arg	max , 	 [ ( )	|	( , )] − ( ) − ( ) −	 , 
 and [ ( )	|	( ̃ , ̃ )] − ( ̃ ) − ( ̃ )	− ≥ 0 
 
For the modular tasks case, we have = ( + ) +  and focus on linear contracts. 
 

Effort choice. The FOCs for the first-best efforts on the outsourced tasks are 

 
 ̃ = arg	max 	 [ ( )	|	 , ] − ( ) − ( ) −  

 = arg	max 	 + [( + )] − − −  

 
and, similarly,  

 ̃ = arg	max 	 + [( + )] − − −  

 
and ̃ = . The participation constraint is written as [ ( )	|	 ̃ , ̃ ] − ( ̃ ) − ( ̃ )	− ̃ ̃ 	≥ 0. The client will set 	such that [ ( )	|	 ̃ , ̃ ] − ( ̃ ) − ( ̃ )	− ̃ ̃ 	= 0, making the vendor’s participation constraint tight and extracting all the surplus. Therefore, + [ ] − ̃ ̃ 	− ( ̃ ) − ( ̃ ) = 0. 
 
So in order to see whether single-sourcing will attain the client’s first-best outcome, we need only check for the existence of an  that can 

yield the vendor’s first-best efforts. Given that the first-best efforts maximize the function + { + (1 − ) } + − − − −
, it is easy to see that SS will yield the first-best outcome for the client if and only if = 0 or = 1. 

 

Multisourcing. Because we assume that the cost of task interdependence is borne by the primary vendor (and thus we assume, without loss 
of generality, that the primary vendor performs the second task), the client’s contract design problem can be stated as 

 
 Max (∙)	Π = [ ( ̃ , ̃ , ̃ )] − ( ̃ ) − [ ( )	|	( ̃ , ̃ )] − [ ( )	|	( ̃ , ̃ )] 
 
subject to the following conditions: 
 
 ̃ = arg	max 	 [ ( ̃ , ̃ , )] − ( ) − [ ( )	|	( ̃ , ̃ )] − [ ( )	|	( ̃ , ̃ )] 
 
 ̃ = arg	max 	 [ ( )	|	( , ̃ )] − ( ) 
 
 ̃ = arg	max 	 [ ( )	|	( ̃ , )] − ( ) −	  
 
 [ ( )	|	( ̃ , ̃ )] − ( ̃ ) ≥ 0 
 
 [ ( )	|	( ̃ , ̃ )] − ( ̃ ) −	 ̃ ̃ ≥ 0 
 

Effort choice. The FOCs for the first-best efforts on the outsourced tasks are 

 
 ̃ = arg	max 	 [ ( )	|	 , ] − ( ) = , and ̃ = , 
 
and, similarly, ̃ = max{ − ̃ , 0} = ( − ) . Here the participation constraints are [ ( )	|	 ̃ , ̃ ] − ( ̃ ) ≥ 0 and [ ( )	|	 ̃ , ̃ ] − ( ̃ ) −	 ̃ ̃ 	≥ 0. The client will set 	such that the vendor’s participation constraint is tight, thereby extracting all the 
surplus; hence + [ ] − ( ̃ ) = 0 and + { ] − ̃ ̃ − ( ̃ ) = 0. Therefore, the client can attain its first-best outcome if it 
can set feasible values for  and  that also yield first-best efforts by vendors. We now demonstrate that the client can indeed set such 
values. 
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Case (i) If 0 < { + (1 − ) } < , then ∗ = 1, ∗ = 0, and ∗ = . In this case, the client can set = 0 and = 1 to attain 
the first-best outcome. 

 

Case (ii) If < { + (1 − ) } < , then ∗ = { ( ) }
, ∗ = { ( ) }

, and ∗ = . Now, setting the contract 

parameter values such that = { ( ) }
 and = { ( ) }

 results in the client attaining its first-best outcome. 

 

Case (iii) If { + (1 − ) } > , then ∗ = 0, ∗ = { + (1 − ) }, and ∗ = . Here the client can set = { ( ) }
 and = 0 to attain the first-best outcome. 

 
We therefore conclude that the multisourcing strategy attains the first-best outcome for the client. 


