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Appendix A 
 
Proofs of all Theorems, Corollaries, and Lemmas for SIMU-OR Auctions 

Theorem 1. For a SIMU-OR auction, given auction state k and new bid : 
1. (∀ < ( ))( [ ] = [ ]); 
2. (∀ ≥ ( ))( [ ] = ≺[ [ ], { } ∪ [ − ( )]]) 

Proof. The first statement follows immediately from the definition of [ ], because ∉ [ ] ⇒[ ] = [ ]. The second statement immediately follows from two facts: (a) the only way to have [ ] ≠[ ] is when ∈ [ ]; and (b) since bid  “covers” only ( ) items, the best possible allocation among [ ] involving  should also involve the best possible prior bids (i.e., from ) covering the remaining − ( ) 
items. Hence, the only alternative to [ ] would be { } ∪ [ − ( )].  

 
Theorem 2. For a SIMU-OR auction, given auction state k and new bid , ∈ ⇔ ( ) > ( ) − ( − ( )) 

Proof. Immediate from Theorem 1, since ∈  if and only if ≺ { } ∪ [ − ( )]. Based on the 
definition of strict total order ≺ and taking into account that  chronologically precedes allocation { } ∪ [ −( )], we have that ( ) > ( ) − ( − ( )).  

 
Corollary 2a.  For a SIMU-OR auction, given auction state k, the winning level at span x is calculated as ( ) =( ) − ( − ) 

Proof. Immediate from Theorem 2 and the definition of winning level.  

 
Corollary 2b. For a SIMU-OR auction, given auction state k and new bid : ∈ [ ] ⇔ ( ) > ( ) − ( − ( )) 

Proof. Immediate from Theorem 2, by considering sub-auction i.  
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Theorem 3. For a SIMU-OR auction, given auction state k and any bid ∈ :  ∈ ⇔ ∃ ≥ ( ) ( ∈ [ ]) 

Proof. First, we prove ∃ ≥ ( ) ( ∈ [ ]) ⇒ ∈ . Consider two following cases for x: 
[Case 1: = ] ∈ [ ] ⇒ ∈ ⇒ ∈ .  
[Case 2: < ] Consider new bid , such that ( ) = −  and ( ) > − ( [ ]). Furthermore, let’s 
consider allocation = { } ∪ [ ]. By definition, ( ) = ( ) + ( [ ]) ≤ − + =  and ( ) =( ) + ( [ ]) > . I.e., ( ) ≤  and ( ) > . Hence, = . Because ∈ [ ] and [ ] ⊆ , we have that ∈ . Consequently, ∈ . 
 
Next, we prove ∈ ⇒ ∃ ≥ ( ) ( ∈ [ ]). From ∈  we have that there exists an auction state l ( ≥

) such that ∈ . Denote  as: = { } ∪ , ∪ , , where , = { ∈ ∧ ≠ } and , = { ∈| ∉ }. Thus, bid sets { }, , , and ,  are pairwise disjoint. Suppose otherwise, i.e., ∀ ≥ ( ) ( ∉ [ ]). 
Consider bid set = { } ∪ , . Denote = ( ) = ( ) + ( , ). Since ≥ ( ), we have that ∉ [ ]. 
Furthermore, by definition, ⊆ [ ] and ∈ . Therefore, ≺ [ ]. Consequently, = ∪ , ≺[ ] ∪ , , i.e., we have found a set of bids [ ] ∪ , ⊆  that is better than , which is a contradiction 
to the definition of .  
 

Corollary 3a. For a SIMU-OR auction, given auction state k, the deadness level at span x is calculated as ( ) =∈{ ,…, }[ ( ) − ( − )] 
Proof. Immediate from Theorem 3 and Corollary 2b. I.e., let ( ) = , then ∈ ⇔ (∃ ≥ )( ∈[ ]) ⇔ (∃ ≥ ) ( ) > ( ) − ( − ) ⇔ ( ) > ∈{ ,…, }[ ( ) − ( − )]. The 
results follow based on the definition of deadness level. 

 
Theorem 4. For a SIMU-OR auction, given any auction state k and sub-auctions x and y, the following statements 
are true: 
1. ( ) ≤ ( ) 2. ( ) ≤ ( ) 3. ( ) = ( ) = ( ) 
4. ( ) ≤ ( ) 5. ≤ ⇒ ( ) ≤ ( ) and ( ) ≤ ( ) 
6. ∈ ⇒ ( ) ≤ ( ) 7. ∈ ⇒ ( ) ≤ ( ) 

Proof. Statements 1-7 follow immediately from the definitions of ( ) and ( ) as well as the definition and properties 
of ( ).  

 
Theorem 5. In a SIMU-OR auction of size N, for any auction state k we have: | | ≤ . 

Proof. Based on Corollary 3b, we have that = ⋃ [ ]. Therefore, instead of analyzing set , we will 
focus on the set ⋃ [ ]. Specifically, we will show that |⋃ [ ]| ≤  for all = 1,… , . In other words, 
given any = 1,… , , we will show that, if we consider all sub-auctions from 1 to x, no more than x different bids can appear 
in the winning allocations of these sub-auctions.  
 
We will prove that |⋃ [ ]| ≤  by induction on x. Obviously, the base case x = 1 holds, since [1] is either a 
singleton set (i.e., it represents the largest-valued 1-item bid that was submitted to the auction) or an empty set (if no 1-item 
bids were submitted so far). In other words, | [1]| ≤ 1. Now let’s assume that this statement holds for x, i.e., |⋃ [ ]| ≤ , and prove that it then must hold for + 1 as well, i.e., |⋃ [ ]| ≤ + 1.  
 
Let’s assume otherwise, i.e., |⋃ [ ]| ≥ + 2, which means that there must exist at least two bids ∈ [ +1] and ∈ [ + 1], such that ∉ ⋃ [ ] and ∉ ⋃ [ ]. Let’s denote the spans of  and  as 

 and  (obviously, , ≥ 1), respectively, and rewrite [ + 1] as [ + 1] = { } ∪ { } ∪ [ + 1 −
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− ], where [ + 1 − − ] denotes the “rest” of [ + 1], besides  and . We can write this way for 3 
reasons: (a) we know that  and  belong to [ + 1]; (b) [ + 1] should involve the best possible allocation that 
can cover the remaining + 1 − −  items of sub-auction + 1, not covered by  and , hence [ + 1 − −]; (c) since , ∉ ⋃ [ ], we have that , ∉ [ + 1 − − ], i.e., we are not “double counting”  
and . 
 
Now consider the following allocation = { } ∪ [ + 1 − − ]. Obviously, ( ) ≤ + 1 − . Also, since ∈

 and ∉ [ + 1 − ], we have that ≠ [ + 1 − ]. Or, more precisely, ≺ [ + 1 − ]. Finally, 
we go back to the expression for [ + 1] and plug in the results, i.e., [ + 1] = { } ∪ { } ∪[ + 1 − − ] = ∪ { } ≺ [ + 1 − ] ∪ { }. Note that there is no danger of “double counting” in the 
latest expression either, since ∉ [ + 1 − ]. Therefore, we derive that [ + 1] ≺ [ + 1 − ] ∪ { }, 
i.e., there exists an allocation with the span less than or equal + 1 that is better than the best allocation with that span, [ + 1]. Contradiction. Therefore, our assumption that |⋃ [ ]| ≥ + 2, was incorrect. This leads us to the 
result that |⋃ [ ]| ≤ + 1, which completes the proof by induction.  
 
Therefore, we have |⋃ [ ]| ≤  for all = 1,… , . The proof of the theorem is concluded by choosing = , i.e., | | = |⋃ [ ]| ≤ .  
 
 

Appendix B 
 
Proofs of all Theorems, Corollaries, and Lemmas for SIMU-XOR Auctions 
 

Theorem 6. For a SIMU-XOR auction, given auction state k and new bid = { , , … , }, ∀ ∈ {1,2, … , }, ∀ ⊆ ℙ:  
1. If ( ) ∉ , then [ , ] = [ , ]. 
2. If ( ) ∈ , then [ , ] = ≺{ [ , ], [ − 1, \{ ( )}] ∪ { }, [ − 2, \{ ( )}] ∪{ }, … , [1, \{ ( )}] ∪ { }, { }}. 

Proof. Let ∗ = ( ). The first statement follows immediately from the definition of [ , ]. I.e., ∗ ∉ ⇒ ∀ ∈, ∉ [ , ] ⇒ [ , ] = [ , ]. The second statement immediately follows from two facts: (a) the 
only way to have [ , ] ≠ [ , ] is when ∃ ∈ , ∈ [ , ]; and (b) since any atomic bid  “covers” 
only ( ) items, the best allocation among [ , ] involving  should also involve the best possible prior bids (i.e., from 

) covering the remaining − ( ) items, made by the set of bidders excluding ( ) = ∗. Hence, the only alternative to [ , ] is [ − ( ), \{ ∗}] ∪ { }. Following the same logic, when we consider a new general bid =( , , … , ), the possible alternatives to [ , ] include [ − 1, \{ ∗}] ∪ { }, [ − 2, \{ ∗}] ∪ { }, …, [1, \{ ∗}] ∪ { }, and { }, and the exact winning allocation is determined by total order ≺ that satisfies allocative 
fairness.  

 
Theorem 7. For a SIMU-XOR auction, given auction state k and new atomic bid . Then ∈ ⇔ ( ) >( , ℙ) − ( − ( ), ℙ\{ ( )}) 

Proof. Let ( ) =  and ( ) = ∗. Immediate from Theorem 6, because ∈  if and only if ≺ { } ∪[ − , ℙ\{ ∗}]. Based on the definition of strict total order ≺ and the fact that  chronologically precedes allocation { } ∪ [ − , ℙ\{ ∗}], we have ( ) > ( , ℙ) − ( − ,ℙ\{ ∗}).  

 
Corollary 7a. For a SIMU-XOR auction, given auction state k, the winning level at span x for bidder ∗ is calculated 
as ( , ∗) = ( , ℙ) − ( − , ℙ\{ ∗}) 
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Proof. Immediate from Theorem 7 and the definition of winning level.  

 
Corollary 7b. For a SIMU-XOR auction, given auction state k and new atomic bid . For all bidder set  such that ( ) ∈ ⊆ ℙ ∈ [ , ] ⇔ ( ) > ( , ) − ( − ( ), \{ ( )}) 

Proof. Immediate from Theorem 7, by considering sub-auction [ , ].  

 
Theorem 8. For a SIMU-XOR auction, given auction state k and any atomic bid ∈ .  

1. If ( ) ≤ − |ℙ|, then: ∈ ⇔ = [ ( ), ( )]; 
2. If ( ) > − |ℙ|, then: ∈ ⇔ ∃ ⊆ ℙ with ( ) ∈  and | | = |ℙ| − − ( )  such that = [ ( ), ] 

Proof. [Case 1] Note that, if ( ) ≤ − |ℙ|, then the atomic bid is automatically live, as long as it is not outbid by other bids 
submitted by the same bidder with same or smaller span (i.e., = [ ( ), ( )]). This is because, for an arbitrary atomic 
bid , we can easily construct a “complementary” future allocation  which satisfies ( ) = − ( ), ( ) = ℙ\{ ( )}, 
and ( ) > ( , ℙ) − ( ), ( ) . It follows that { } ∪ = ( ) and ∈ .  

 
[Case 2] We first prove ∃ ⊆ ℙ with ( ) ∈  and | | = |ℙ| − − ( )  such that = [ ( ), ] ⇒ ∈ . If ( ) = , then − ( ) = 0 and | | = |ℙ|, which implies that [ ( ), ] = . Therefore, = [ ( ), ] ⇒= ⇒ ∈ . If instead ( ) < , consider a future allocation  where ( ) = − ( ), | ( )| = − ( ), 
and ( ) ∩ = ∅. In other words,  covers − ( ) items and contains bidders that are not in . Suppose ( ) >( , ℙ) − ( , ), then [ ( ), ] ∪ = ( ). Therefore, ∈ . 
 
We then prove ∈ ⇒ ∃ ⊆ ℙ with ( ) ∈  and | | = |ℙ| − − ( )  such that = [ ( ), ]. Instead of 
directly proving this, we prove the contrapositive statement, i.e., ∀ ⊆ ℙ with ( ) ∈  and | | = |ℙ| − − ( ) , ≠[ ( ), ] ⇒ ∈ . Consider an allocation  of the whole auction that contains , i.e., ( ) ≤  and ∈ . Let = \{ }, thus, we know that ( ) ≤ − ( ). Because each bidder in an allocation has to bid on at least 1 item, we have | ( )| ≤ − ( ), or |ℙ| − | ( )| ≥ |ℙ| − − ( ) . Consider [ ( ), ℙ\ ( )]. Because = \{ }, we know ( ) ∈ ℙ\ ( ). Therefore, there exists ⊆ ℙ\ ( ) that satisfies | | = |ℙ| − ( − ( )) and ( ) ∈ . We either have [ ( ), ] ≺ [ ( ), ℙ\ ( )], or [ ( ), ] = [ ( ), ℙ\ ( )]. Furthermore, for any bidder set Q such 
that | | = |ℙ| − ( − ) and ( ) ∈ , { } itself is a feasible allocation for sub-auction [ ( ), ]. Thus, the fact that ≠[ ( ), ] implies { } ≺ [ ( ), ]. Therefore, we always have { } ≺ [ ( ), ℙ\ ( )]. As a result, = ∪{ } ≺ ∪ [ ( ), ℙ\ ( )], and therefore ∈ .  
 

Corollary 8a. For a SIMU-XOR auction, given auction state k, the deadness level at span x for bidder ∗ is 
calculated as follows: 

1. If ≤ − |ℙ|, then: ( , ∗) = ( , ∗); 
2. If > − |ℙ|, then: ( , ∗) = min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( , ) 

Proof. Consider a new atomic bid, , to be submitted at state + 1. Let ( ) =  and ( ) = ∗. If ≤ − |ℙ|, then based 
on Theorem 8, ∈ ⇔ = [ , ∗] ⇔ [ , ∗] ≺ { } ⇔ ( ) > ( , ∗) ⇔ ( , ∗) =( , ∗). 
 
If instead > − |ℙ|, then based on Theorem 7, ∈ ⇒ ∃ ⊆ ℙ with ∗ ∈  and | | = |ℙ| − ( − ) such that = [ , ]. Because [ , ] precedes [ , ] in time, it follows that ( ) = ( , ) >( , ) ≥ min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( , ). Therefore, we know that if  is live, then ( ) >min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( , ). Conversely, if ( ) > min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( , ), suppose 
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min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( , ) = ( , ) where ∗ ∈  and  | | = |ℙ| − ( − ), then [ , ] ≺ { }. One can 

construct a “complementary” future bid combination  such that ( ) = − , ( ) = ℙ\ . Then, ∪ [ , ] ≺ ∪{ }, and therefore  is live. Together, it follows that ∈ ⇔ ( ) > min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( , ) ⇔( , ∗) = min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( , ).  

 
Theorem 9. In a SIMU-XOR auction, for any auction state k, the following statements are true: 
1. ( , ) ≤ ( , ℙ) 2. ( , ) ≤ ( , ) 
3. ∀ ∈ ℙ, ( , ) = ( , ) = ( , ℙ) 
4. ( , ) ≤ ( , ) 
5. ≤ ⇒ ( , ) ≤ ( , ) and ( , ) ≤ ( , ) 
6. ∈ ⇒ ( ), ( ) = ( ) 7.	 ∈ ⇒ ( ), ( ) = ( ) 
Proof. Statements 1-5 follow immediately from the definitions of ( , ), ( , ), and ( , ).  
For statement 6, denote = { } ∪  where ( ) ≤ − ( ) and ( ) ∉ ( ). By definition, ( ) + ( ) =( , ℙ) = ( ), ( ) + ( − ( ), ℙ\{ ( )}). If ( ) < ( − ( ), ℙ\{ ( )}), there must be 
another allocation ′ with ( ) ≤ − ( ) and ( ) ∉ ( ′) that has ( ) > ( ). As a result, ≺ { } ∪ ′, 
contradiction. Therefore, ( ) = ( − ( ), ℙ\{ ( )}) and ( ) = ( ), ( ) .  
 
For statement 7, based on Theorem 8, if ( ) ≤ − |ℙ|, then ∈ ⇒ = [ ( ), ( )] ⇒ ( ) =( ), ( ) . Meanwhile, Corollary 8a states that in this case, ( ), ( ) = ( ), ( ) . Therefore, ( ), ( ) = ( ). Instead, if ( ) > − |ℙ|, based on Theorem 8, ∈ ⇒ = [ ( ), ] where ( ) ∈⊆ ℙ and | | = |ℙ| − − ( ) , which implies ( ) = ( ( ), ). Meanwhile, Corollary 8a states that in this case, ( ), ( ) = min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( ( ), ). Since ( ) ∈ , we know that ( ( ), ) ≥ ( ). Overall, ( ) = ( ( ), ) = min∀ ⊆ℙ, ∗∈ ,| | |ℙ| ( ) ( ( ), ) = ( ), ( ) .  

 
Theorem 10. For a SIMU-XOR auction, given auction state k, there can be no more than ( − + 1, |ℙ|) live 
atomic bids with span x. 

Proof. At auction state k, let the atomic bids of span x of each bidder be , , … , |ℙ|. Without loss of generality, assume that |ℙ| ≺ |ℙ| ≺ ⋯ ≺ . Suppose |ℙ| ≥ − + 1, consider the atomic bid , i.e., the ( − + 1)th highest atomic bid 
at that span x. There are precisely |ℙ| − ( − ) − 1 atomic bids that are inferior to , namely , … , |ℙ|. Therefore, 
for any bidder set Q such that | | = |ℙ| − ( − ), it must contain at least one bidder who placed the atomic bid  where 1 ≤ ≤ − + 1. Based on the assumed order, ∀  such that − + 2 ≤ ≤ |ℙ|, we have ≺ . Because { } itself is 
a feasible allocation for sub-auction [ , ], we know that either = [ , ] or ≺ [ , ] is true. However, in 
either case, we always have ≺ [ , ]. Because the choice of bidder set Q is arbitrary, it follows that ∈ . I.e., 
only atomic bids among , , … ,  are possible to be live at auction state k. Suppose instead |ℙ| < − + 1, following 
the same logic above, we can see that all |ℙ| atomic bids at span x can potentially be live. Overall, there cannot be more than ( − + 1, |ℙ|) live atomic bids at span x.  

 
Corollary 10. For a SIMU-XOR auction, given auction state k, the maximum possible number of live atomic bids 
is ∑ ( , |ℙ|). I.e., | | ≤ ∑ ( , |ℙ|) 

Proof. Based on Theorem 10, by summing the live bids across all spans we have that | | ≤ ∑ ( − + 1, |ℙ|) =∑ ( , |ℙ|).  
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Appendix C 

 
Additional Theoretical Results 
 
Here we list two additional theoretical results for SIMU auctions, which are not discussed in the main paper but may provide 
further insights to understand SIMU auctions. 
 
First, in SIMU-OR auctions, even by very quick, naïve calculations, one can show that can never have more than ( ⋅ ) 
live bids at a time, as explained below. 
 

In SIMU-OR auctions, for any auction state k, | | = ( ⋅ ). 
 
Proof. The proof of the lemma follows immediately from the fact that in an auction of size N, there can be no more than N live 
1-item bids (i.e., bids with span 1), no more than N/2 live 2-item bids, or, more generally, no more than N/x live x-item bids, 

where = 1, 2, … , . And from elementary mathematical analysis we have that + +⋯+ = ⋅ 1 + +⋯+ =( ⋅ ).   
 
Note that the above result could be written as a non-asymptotic upper bound as well, i.e., without using O(⋅) notation. In such 
case, the naïve upper bound could be stated as: | | ≤ ∑ / . The analogous result about the number of winning bids 
is obvious: | | ≤ , i.e., there can be at most N winning bids in an auction of size N, because each bid has to bid on at 
least one item. 
 
Second, in a SIMU-XOR auction, if a bidder submits multiple atomic bids simultaneously, each of which is above the current 
winning level at its span, then only one of those atomic bids can be winning (due to the XOR constraint), and the winner will 
be the atomic bid with largest margin over its current winning level. If several atomic bids all have the largest margin, the one 
with smallest span will win (due to fairness-based tie-breaking). This is summarized as follows.  
 

For a SIMU-XOR auction, given auction state k and a new general bid = { , , … , }, where ∀ ∈{1,2, … , }, ( ) = ∗, ( ) = , and ( ) > ( , ∗). Let ∗ be the smallest span  that satisfies ∈argmax∈{ , ,…, }( ( ) − ( , ∗)). Then ∗ ∈ . 

Proof. For atomic bid ∈ , if it were to win the auction, the resulting winning allocation would be { } ∪ ( −, ℙ\{ ∗}), which has the revenue of ( ) + ( − , ℙ\{ ∗}). Because ( ) + ( − , ℙ\{ ∗}) =( , ∗) + ( − , ℙ\{ ∗}) + ( ) − ( , ∗) = ( , ℙ) + ( ) − ( , ∗), the maximum revenue is 
achieved by span  that satisfies ∈ argmax∈{ , ,…, }( ( ) − ( , ∗)). The conclusion follows based on our tie-breaking 

mechanism. Furthermore, only ∗ in  will win in state + 1 because of XOR bidding.  
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Appendix D 
 
Benefits of a Real-Time Bidder Support System 
 
In our paper, the difference between a real-time bidder support system (one that provides up-to-date information feedback after 
each bid) versus a non-real-time system (one that provides information feedback only at certain pre-specified intervals, i.e., 
which inevitably results in providing some outdated information) can have at least two implications for performance.  
 
First, the two systems differ in their usability/feasibility. Because we consider continuous combinatorial auctions, where no 
formal “rounds of bidding” are imposed and the participations are completely asynchronous, it is critical to have a real-time 
bidder support system, simply because the auctions would be infeasible to conduct otherwise. Imagine an auction where bidders 
are free to join and leave as they wish, but have to wait (e.g., minutes or even hours) to obtain information feedback and 
construct their bids, such a mechanism will have staggeringly low usability and may not be adopted at all. 
 
Second, the two systems can also result in different auction convergence outcomes and bidder experiences. While bidders can 
receive up-to-date information from a real-time system, they may receive obsolete information from a non-real-time system 
that provides feedback with some (potentially significant) delay, during which multiple bids could have been submitted. We 
illustrate this point using a numeric example and a set of stylized simulation examples. In our illustration, we assume bidders 
are relatively conservative and use deadness levels as bidding guidelines, and we show how a non-real-time system can result 
in slower auction convergence. 
 

Numeric Example. Consider a SIMU-OR auction of 4 units with the following 4 OR bids already submitted: = (1, $1), = (1, $1), = (1, $1), = (2, $4) 
 
At auction state 4 (i.e., after these 4 bids), the sub-auction revenues and deadness levels are as follows: (1) = $1,  (2) = $4, (3) = $5, (4) = $6 (1) = $1,  (2) = $2, (3) = $5, (4) = $6 
 
Now suppose a bidder wants to bid on 2 units and makes a request to see the deadness level for 2 units. Under a 
real-time bidder support system, the bidder sees the timely and correct deadness level of $2 for 2 units, and can 
make informed bidding decisions accordingly. However, under a non-real-time bidder support system, it takes a 
longer time to update feedback metrics. For instance, suppose 2 bids are submitted during the time it takes to update 
feedback metrics, i.e., at auction state 4, the bidder still only has access to the deadness level calculated based on 
bids at auction state 2 (i.e., based on  and , deadness level for 2 units was $0), which is already obsolete. 
Consequently, the bidder may place $1 on 2 units, which appears to be live based on (obsolete) information 
calculated at state 2, but in fact is already dead based on (timely and correct) information at state 4. Therefore, 
having a non-real-time bidder support system that provides obsolete feedback information can lead bidders to make 
incorrect decisions (e.g., submitting bids that are already dead), which may slow down the convergence of the 
auction. 

 
Simulation Experiments. Consider a SIMU-OR auction of 100 units and a set of bidders. We simulate both a real-
time bidder support system and a non-real-time system as follows: 

1. Real-time system: at auction state k, a bidder makes a bid by following two steps: (1) randomly pick span ∈ {1,… ,100}; (2) assign bid value = ( ) + 1. 
2. Non-real-time system: assuming the system takes a longer time to update feedback metrics, during which 

 new bids are submitted. At auction state k, a bidder makes a bid by following two steps: (1) randomly 
pick span ∈ {1,… ,100}; (2) assign bid value = ( ) + 1, where = ( 	 	 ) and − −  
represents the most recent state when deadness levels are updated. Also, for auction states < , bidders 
only have access to deadness levels at state 0. 

In other words, under a real-time system, new bids have values higher than current deadness levels, and are live by 
construction. Under a non-real-time system, new bids have values higher than most recently updated deadness 
levels, which could be outdated. For simulation simplicity and illustrative purposes, we set a fixed auction revenue 
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level of $1000 and count the number of bids it takes to reach that level, as a measure of the speed of auction 
progression. We conduct 500 simulation runs and report two quantities: (1) the average number of bids submitted 
before auction revenue hits $1000 and (2) the average percentage of bids that are already dead upon submission. In 
other words, the first quantity represents the speed of auction progression, and the second quantity reflects the 
amount of “wasted effort” in the auction. We report the results in the following table. 
 

Update Speed 
Average Number of Bids 
before Revenue Hits $1000 

Average Percentage of Dead Bids 
upon Submission 

Real-time 3586.70 0% = 1 3976.21 13% = 5 6324.71 52% = 10 8559.97 68% = 15 10347.07 74% 
 
Based on the results, as  grows larger (i.e., as the system becomes less real-time), we can see that it takes more 
bids to reach $1000 auction revenue, and a higher percentage of those bids are already dead upon submission, 
because of the obsolete deadness level information. 

 
In summary, compared to a real-time bidder support system, a non-real-time system may result in significantly slower auction 
progression and substantial “wasted effort”, and hence slower auction convergence as well as potentially lower bidder 
satisfaction. 

 

Appendix E 
 
Comparison Between OR Versus XOR Bidding Language 
 
Bidder’s Perspective 
 
From the bidder’s perspective, the OR and XOR bidding languages differ on at least two aspects: expressiveness and simplicity 
(Nisan 2000).  
 
Expressiveness: the XOR bidding language is strictly more expressive than the OR bidding language, i.e., any valuations 
expressed in OR bids can be expressed in XOR bids, and XOR language can also directly express substitutability among bids. 
For example, consider a SIMU auction of 10 units, we provide two canonical cases to illustrate this aspect.  
 

Example E1: Suppose a bidder is willing to pay $6 for 4 units or $7 for 5 units, but has $0 valuation for fewer than 
4 units and $7 valuation for more than 5 units. Under XOR language, the bidder can directly express the preference 
on 4 or 5 units by making 2 XOR bids, respectively $6 on 4 units and $7 on 5 units. Under OR language, the bidder 
cannot express this preference perfectly. By placing $6 on 4 units and $7 on 5 units, the bidder may end up having 
to pay $13 for 9 units, despite her $7 valuation for 9 units. Alternatively, by placing $6 on 4 units and $1 on 1 unit, 
the bidder may end up having to pay $1 for 1 unit, despite her $0 valuation for 1 unit. Either way, the bidder is 
exposed to the risk of disutility. 

 
Example E2: Suppose a bidder has non-zero valuations for any number of units, and her valuations are increasing 
with diminishing margins with respect the number of units. I.e., let  represent her valuation for  units, then ∀ , > 0 and − < − . Under XOR language, the bidder can directly express this preference by making 
10 XOR bids, respectively  on  units. Under OR language, the bidder can express this preference, but must 
express it differently. In particular, she needs to make 10 OR bids, each on only 1 unit, with values , ( − ), … , ( − ). Suppose the bidder (mistakenly) places  on 1 unit and  on 2 units, she may end 
up having to pay +  for 3 units, which is higher than her valuation for 3 units ( ), because of the concavity 
of valuations. 
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Simplicity: the XOR language is less simple than OR language (i.e., it may take fewer OR bid elements to express certain 
preference than XOR). To see this, consider a simple SIMU auction of 3 units. If a bidder is willing to pay $5 for 1 unit, $10 
for 2 units, and $15 for 3 units, he/she only needs to make two OR bids (i.e., a $5 bid on 1 unit and a $10 bid on 2 units), but 
would have to make three XOR bids (i.e., a $5 bid on 1 unit, a $10 bid on 2 units, and a $15 bid on 3 units).  
Given these two differences, the bidding language used in an auction should be sufficiently expressive for its specific 
application needs and also simple for bidders to use. 
 
 
Auctioneer’s Perspective 
 
Assuming the auctioneer’s goal is to maximize auction revenue, which of the two bidding languages leads to higher revenue 
depends heavily on many different factors, including, at the very least: (1) bidders’ valuations; (2) bidders’ bidding behaviors 
(i.e., how they choose to express their preferences under different bidding languages); (3) auction progression (i.e., how bidders 
revise their bids during the course of an auction); and (4) other auction-specific activity rules. Below we construct 3 numeric 
examples to show, under some specific assumptions about bidder valuations and bidding behaviors, the OR language may 
result in higher or equal revenue than the XOR language. In these examples, we explicitly fix bidders’ valuations, and assume 
they make bids to express their valuations in a one-shot manner (i.e., without iteratively revising their bids later). These stylized 
examples are intended to illustrate only a small portion of the potential intricacies of this problem. 
 

Example E3: OR leads to higher revenue than XOR. 
Consider a SIMU auction of 4 units and 2 bidders, A and B, with the following valuations:  
• Bidder A is willing to pay $5 for 2 units, $8 for 3 units;  
• Bidder B is willing to pay $6 for 3 units or $9 for 4 units.  
 
Under OR bidding language, suppose bidders choose to make the following bids: 
• Bidder A makes two OR bids: ($3 on 1 unit) OR ($5 on 2 units);  
• Bidder B makes two OR bids: ($3 on 1 unit) OR ($6 on 3 units).  
As the result, the auction revenue is $11, by allocating 3 units to bidder A for price $3+$5 and allocating 1 unit to 
bidder B for price $3.  
 
On the other hand, under XOR language, suppose bidders choose to make the following bids: 
• Bidder A makes two XOR bids: ($5 on 2 units) XOR ($8 on 3 units);  
• Bidder B makes two XOR bids: ($6 on 3 units) XOR ($9 on 4 units).  
As the result, the auction revenue is $9, by allocating all 4 units to bidder B. In other words, the OR bidding 
language results in $2 higher revenue than XOR language. 

 
Example E4: OR leads to equal revenue as XOR 
Consider the same auction in the previous example. Under OR bidding language, suppose bidders choose to make 
the following bids: 
• Bidder A makes two OR bids: ($5 on 2 units) OR ($8 on 3 units);  
• Bidder B makes two OR bids: ($6 on 3 units) OR ($9 on 4 units).  
Since the combination of any two bids contains more than 4 units, which cannot be fulfilled, the auction revenue is 
$9, by allocating all 4 units to bidder B. This is the same auction revenue under the XOR language. 

 
Example E5: OR leads to equal revenue as XOR 
Consider a SIMU auction of 3 units and 2 bidders, A and B. Each bidder is willing to pay $3 for 1 unit, $5 for 2 
units, or $6 for 3 units (i.e., both bidders have decreasing marginal valuations). 
 
Under OR bidding language, suppose bidders choose to make the following bids: 
• Bidder A makes three OR bids: ($3 on 1 unit) OR ($2 on 1 unit) OR ($1 on 1 unit);  
• Bidder B makes three OR bids: ($3 on 1 unit) OR ($2 on 1 unit) OR ($1 on 1 unit).  
As the result, the auction revenue is $8, by allocating 2 units to bidder A for price $3+$2 (assuming bidder A bids 
first) and allocating 1 unit to bidder B for price $3.  
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On the other hand, under XOR language, suppose bidders choose to make the following bids: 
• Bidder A makes three XOR bids: ($3 on 1 unit) XOR ($5 on 2 units) XOR ($6 on 3 units);  
• Bidder B makes three XOR bids: ($3 on 1 unit) XOR ($5 on 2 units) XOR ($6 on 3 units).  
As the result, the auction revenue is also $8, by allocating all 2 units to bidder A for price $5 (assuming bidder A 
bids first) and allocating 1 unit to bidder B for price $3. 

 
Example E3 represents the scenario where bidders cannot express their valuations perfectly under OR language. Specifically, 
by making 1-unit bids, they are exposed to the risk of winning 1 unit, even if they may not want it. However, they can directly 
and perfectly express their valuations under XOR language. As such, the auction revenue under OR is higher than under XOR. 
Example E4 and E5 represent two special cases where bidders can perfectly express their valuations under both OR and XOR 
languages, and therefore result in the same auction revenue.  
 
In addition to the above numerical examples, we also provide theoretical analyses of a stylized case, where OR language may 
lead to higher or equal auction revenue as XOR language. 
 

Consider a SIMU auction of  units and 2 bidders, A and B, with the following valuations:  
• Bidder A is willing to pay $  for  units or $  for  units; 
• Bidder B is willing to pay $  for  units or $  for  units. 
Furthermore, assume that < < + ≤ < 2  and 2 − ≤ . Also assume that < , < , i.e., the 
bid value is higher for more units.	
 
Under XOR language, bidders can perfectly express their preferences by making the following bids: 
• Bidder A makes two XOR bids: ($  on  units) XOR ($  on  units);  
• Bidder B makes two XOR bids: ($  for  units) XOR ($  for  units).  
As a result, the auction revenue is max + , + . 
 
On the other hand, under OR bidding language, due to our assumptions on  and , bidders cannot perfectly express 
their preferences without being exposed to the risk of acquiring allocations they don’t value. Here, we consider 
four different situations: 
 
Situation 1: 
• Bidder A makes two OR bids: ($  on  units) OR ($  on  units).  
• Bidder B makes two OR bids: ($  for  units) OR ($  for  units).  
The resulting auction revenue is max + , + , + , + . 
 
Situation 2: 
• Bidder A makes two OR bids: ($  on  units) OR ($ −  on −  units).  
• Bidder B makes two OR bids: ($  for  units) OR ($ −  for −  units).  
The resulting auction revenue is max + + − , + + − = max + , + . 
 
Situation 3: 
• Bidder A makes two OR bids: ($  on  units) OR ($ −  on −  units).  
• Bidder B makes two OR bids: ($  for  units) OR ($  for  units).  
The resulting auction revenue is max + , + + − , − + = max + , +, − +  (revenue of − +  is possible because we have assumed 2 − ≤ ). 
 
Situation 4: 
• Bidder A makes two OR bids: ($  on  units) OR ($  on  units).  
• Bidder B makes two OR bids: ($  for  units) OR ($ −  for −  units).  
The resulting auction revenue is max + , + + − , − + = max + , +, − +  (revenue of − +  is possible because we have assumed 2 − ≤ ). 
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Overall, in situation 2, OR results in the same revenue as XOR; in situations 1, 3, and 4, OR results in no less 
revenue than XOR (i.e., OR may result in higher or equal revenue as XOR, depending on the specific values of , , , ).  

 
Generalizing from these cases, we argue that, assuming bidders make truthful bids based on their valuations in a one-shot 
manner, (1) OR language results in no less auction revenue than XOR if bidders cannot perfectly express their preferences 
under OR; and (2) OR language results in equal auction revenue than XOR if bidders can perfectly express their preferences 
under OR. 
 
Importantly, in addition to bidding language choice, auction revenue depends on bidders’ specific valuations and how they 
choose to express their valuations, including bidders’ strategies for updating their bids continuously over time (i.e., in non-one-
shot contexts). We would also like to emphasize that the choice of OR versus XOR has other implications in addition to revenue. 
For instance, in the above Example E3, bidder B is allocated 1 unit, which may be deemed undesirable by the bidder (the bidder 
only has non-zero valuations for 3 or 4 units). This can potentially lead to lower bidder satisfaction and discourage participation. 
Therefore, the auctioneer needs to consider multiple aspects (not just revenue) when choosing bidding language. 


