Cﬁv‘e/f?terly

OPTIMIZING AND SATISFICING: THE INTERPLAY BETWEEN
PLATFORM ARCHITECTURE AND PRODUCERS’ DESIGN
STRATEGIES FOR PLATFORM PERFORMANCE

Sabine Brunswicker
Research Center for Open Digital Innovation, Purdue University, 516 Northwestern Avenue,
West Lafayette, IN 49706 U.S.A. {sbrunswi@purdue.edu}

Esteve Almirall
ESADE Business School, Universitat Ramon Llull, Av. Toree Blanca 59,
SantCugat-Barcelona, SPAIN {esteve.almirall@esade.edu}

Ann Majchrzak
Marshall School of Business, University of Southern California,
Los Angeles, CA 90089 U.S.A. {amajchrzak@usc.edu}

Appendix A
Summary of Robustness Checks I

We performed a series of simulations that were examining the robustness of our model specification (Davis et al. 2007). In particular, we
explored whether the results would change if we modified the search heuristic h (see Table 3 in the main document) and the design moves (hill-
climbing and long-jump) that define how agents search the design space when combining design elements into apps. We implemented three
major robustness analyses: First, we examined the robustness of our binary representation of long-jump and hill-climbing as two dichotomous
search moves, modeled in accordance with Levinthal (1997). To do so, we explored the effects of an alternative continuous representation
following Billinger et al. (2013). Second, we examined the robustness of our assumption about the average amount of resources for long-jumps
(R) that each agent has available when moving through the iterative search process (Billinger et al. 2013; March 1981; Rivkin 2000). Third,
we also explored whether a simple categorical function to model failure-induced jumps is appropriate given alternative probabilistic models
suggested in the literature on search and decision making (Greve 1998, 2002; Hu et al. 2011; Lant 1992). We will briefly report the results
of these three robustness checks.

Robustness Check 1: Alternative Modeling of Local Versus Distant Search

In our simulations reported in the main document, we modeled hill-climbing and long-jumps as dichotomous facets of local versus distant
search, following the line of research of Levinthal (1997). Our agents randomly change a design element in their design vector d=<d1,...,d16>.
The type of search move (hill-climbing or long-jump) defines how many decision variables they change. Ifthey are hill-climbing, they change
only one element, but if they engage in a long-jump, they randomly change several (up to six) design elements in their vector. We labeled this
as a “greedy” model in our simulation model, and also in the code itself. As an alternative approach, we implemented and tested Billinger et
al.’s (2013) approach to modeling different facets of search. In this alternative approach, the agents gradually adjust their search distance
starting with an initial search distance of three that is then adjusted according to their success. We labeled this modeling as

adaptive” (and the code respectively). In essence, this implies that if agents could find a higher position, they became more conservative and

MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A1

Brunswicker et al./Optimizing and Satisficing

gradually reduced the search distance over time. On the contrary, if agents are unsuccessful, they became more risk-taking by increasing their
search distance gradually. Thus, our agents rapidly take many long-jumps at high levels of coupling. The use of what we call adaptive in our
code resulted in a higher number of iterations, and slightly less pronounced results. However, the general insights gained from our simulations
remain the same. Only minor differences could be detected. We judged our results as robust after completing these robustness checks.

Robustness Check 2: Varying the Level of Resources for Long-Jumps

The second aspect that we explored was resources for long-jumps available to our agents (March and Shapira 1992). Indeed, prior studies
extending Levinthal’s the NK model highlight that bold long-jumps are limited by the resources available to the agent (Billinger et al. 2013;
Rivkin 2000). Further, this theoretical assumption is also consistent with empirical insights. Major design moves are resource intensive, and
accrue technological debt (Gilette 2011; Woodard et al. 2013). Developing a radically new app takes time, money, and energy, and such
resources deplete. Thus, we explored different scenarios by limiting the number of long-jumps available to each agent from 25, 50,100, to 250.
Obviously more resources for long-jumps altered the results significantly, particularly at the lower end of the spectrum: Ifresources were really
low (10 or 25 jumps as average), agents quickly suffered from too little resources to engage in long-jumps even if they aspired to jump because
they were below their competitive aspiration. We learned that a minimum of 50 long-jumps is necessary to allow developers to cope with higher
levels of coupling. If the amount of resources available is really high (e.g., 500 long-jumps as average), the differences in the effect of
producers’ design strategies (optimizing versus satisficing) unfold in an even more pronounced way. The downside of optimizing is even more
obvious: platforms with optimizing producers perform significantly lower, and the outcome is even more skewed such that only a few stars
are clearly separated from the rest of the population. However, general trends and transition points were similar, and we learned that, on
platforms where “extra” effort and major design moves are needed (tight coupling), very high levels of resources for risk-taking long-jumps
can be very detrimental.

Robustness Check 3: Probabilistic Function for Failure-Induced Long-Jumps

Finally, we also explored the impact of a probabilistic model for failure-induced long-jumps as a function of one agent’s distance from the
performance target associated with his competitive aspiration. Prior research on adaptive aspirations has concluded that both individuals and
organizations often follow a simple heuristic when judging their performance as failure, and taking distant moves depending on their relative
standing. They encode any value above their aspiration as a success and thus hill-climb (and the opposite for any value below as failure, trig-
gering long-jumps). However, following prior work by Greve (2002) and other recent studies on adaptive aspirations (Hu et al. 2011; Lant
1992), we also pursued a probabilistic representation of the rule. We provided a higher probability for an agent making long-jumps ifthe agent
is farther away from the agent’s competitive aspiration (which can be either an optimizing or a satisificing one). In our probabilistic modeling,
the ones that are separated from their aspiration by the greatest distance had a probability of 0.9 to engage in a long-jump; the ones that were
closer to their aspiration had only 0.1 probability of taking a long-jump. The probability was linearly distributed between 0.1 and 0.9, in
accordance with the constant-slope response model proposed by Greve (1998). The results obtained in the experiments with a probabilistic
modeling approach were completely consistent with the ones obtained when agents follow a categorical decision rule.

Appendix B

Note on Simulation Lengt |

Our simulation ends when all the agents exhausted their resources available for long-jumps (the maximum number of long-jumps available to
them) or when no agent changes the position after a full iteration. The length of the simulations varies depending on K, the tightness of coupling
of'the elements in the platform, and other treatment conditions. For the reported number of simulations (based on an average maximum number
of long-jumps of 100), the number of design iterations ranged from 6 to 500.

In Figure B1, we provide an overview of the length of the simulations for different levels of coupling (K), no constraint (C = 0), and speed of
adjustment of S=1 and S = 10. The length of the simulation increases as K increases. Further, with a higher S, we see that the number of
iterations decreases as K increases. If we increase C, the simulations also become shorter. The average number of iterations was 311 across
all simulation experiments. Thus, on average the simulations ended before the maximum length of 500 iterations because agents had exploited
their resources for long-jumps or had settled on the design with the highest fitness.

A2 MIS Quarterly Vol. 43 No. 4—Appendices/December 2019

Brunswicker et al./Optimizing and Satisficing

Nurmber of Iterations per Simulation

als

Speed of adjustment

5004

1004

&
g

2004

2

Iterations

g
g

1004

3
8

Coupling K Wom 1 B2 B8 8« EBSERcER7ER 0 ERoEI 10ED 11 B3 12 B3 1369 146315

Figure B1. Overview of Length of Simulations

Appendix C

Simulation Code

Summary Information

Our computational model extends the traditional NK Model used by Levinthal (1997). In this pseudocode, we present the main loop of the
simulations with variations.

The code is optimized for speed. Therefore, the code is as simple as possible using extremely simple logical structures. NK landscapes are
mapped into a vector with a single index. Agents are depicted as a structure and also arranged as a vector of this structure. The program is
written in Julia, a very fast dynamic programming language for high-performance numerical analysis.

The resulting algorithm is simple. For each simulation a landscape is created. Then 1,000 agents are randomly placed on it. For each iteration
and each agent, a movement is executed. Hill-climbing is first attempted. Ifhill-climbing is not possible because the agent has reached a local
maximum, a long-jump is executed in accordance with the behavioral rules specified for the agents. These movements are continued until the
end of the simulation (when no movements are left).

MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A3

Brunswicker et al./Optimizing and Satisficing

Table C1. Summary of Code Structure (Pseudo-Code)

type agent
position # position in the NK landscape
searchdistance # (initially 3, only in case of adaptive jumps with changing radius
#in accordance with Billinger et al. 2013, not used for greedy)
maxJumps #each agent has a max number of jumps
numJumps #the number of long-jumps that has done the agent so far
end

for constraints = none, 2 bits, 4 bits, 6 bits
for aspiration point = none, medianAgent, topAgent
forK=0..15
for experiments = 1..500
landscape = create a landscape(N = 16, K, constraints)
Deploy 1000 agents in random locations in the landscape
while there are still changes AND there are iterations left
find aspiration point # either top, median or none if hill-climbing
for each agent
hill-climbing
Search at distance 1 for the best design with platform constraints
If none better found AND fitness(agent)<aspiration point
jump by randomly changing between 2..6 bits
agent.numJumps++
there are changes = TRUE
end
end
end
end
end
end

The Implementation in Julia (version v 0.4)
BestStrategy.jl

include("ListStrategies.jl")
include("Fitness.jl")

function BestStrategy(strategy,ag,iN)
BestStrategy - Looks for the best possible strategy of the agents

#Return

newStg -> New Strategy to implement

#Inputs

strategy-> 1)Incremental + greedy (max fitness)

2)Incremental + fitter (better fithess with fitness' prob.)

3)Pattern selection

ag -> Agentto be considered

iIN -> Range of bits to consider e.g., beginning: end (depends if some components are fixed ...)

maxFit=Fitness(ag.stg)
newStg=ag.stg

Ad MIS Quarterly Vol. 43 No. 4—Appendices/December 2019

#if (strategy == 1 || strategy == 2 || strategy==3 || strategy==4 || strategy==5)

Incremental + greedy
IStg=ListStrategies(ag.stg,iN,1)

for IS=1:size(I1Stg)[1]
if (Fitness(IStg[IS]) > maxFit)
newStg=IStg[IS]
maxFit=Fitness(IStg[IS])
end
end
#end
return newStg
end

BitGet.jl

function BitGet(i,nbit)

BitGet Returns the value of a certain bit

Returns:

0.1 -> value of the bit

Inputs:

i -> integer to consider

nbit -> number of bit to consider

i=int32(i)

if (i & int32(2”(nbit-1))) >0
return 1

else
return O

end

end

BitSet.jl

function BitSet(i,nbit,val)
BitSet Returns i with nbit set to val

Returns:
i -> i with nbit set to val
Inputs:
i -> integer to consider
nbit -> number of bit to consider
val -> value to set (0,1)
i=int32(i)
if val==
i=i|27(nbit-1)
else
i=i&~(2"(nbit-1))
end
return i
end

Brunswicker et al./Optimizing and Satisficing

MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A5

Brunswicker et al./Optimizing and Satisficing

ListStrategies.jl

function ListStrategies(stgO,iN,M)

ListStrategies From a given strategy, lists all strategies that differ in M or less components
Returns:

IStg -> vector with all possible strategies

Inputs:

stgO -> original strategy

iIN -> elements (bits) to be considered in the set

M ->maximum number of components in which strategies can differ=1;

xM=M

IStg=zeros(Int,1)

if (xM>size(iN,1))
xM=size(iN,1)
end

for i=1:xM
combi=collect(combinations(iN,i))
n_combi=size(combi,1)
s_combi=size(combi[1],2)

for j=1:n_combi
n_stg=stgO
for t=1:s_combi

if (n_stg & 2*(combi[j,t][1]-1)) ==

if (bitget(n_stg,combi[j,t])==0)
n_stg=(n_stg | 2*(combi[j,t][1]-1))
n_stg=bitset(n_stg,combilj,t]);

else
n_stg=(n_stg $ 2*(combij,t][1]-1))
n_stg=bitset(n_stg,combifj,t],0);

end

end

ifi==1 && j== # first time
IStg[1]=n_stg
else
push!(IStg,n_stg)
end
end
end
return I1Stg
end

A6 MIS Quarterly Vol. 43 No. 4—Appendices/December 2019

CreaLandscape.jl

#

L

function CreaLandscape(N,K)

CreaLandscape Creates a landscape N-K (see Kauffman)

Returns:

m_cs->max interactions

CS -> global variable that contains vector dependencies

CV ->global variable that contains random number used to build the

landscape

Inputs:

N ->number of different components of the Strategy

K ->number of components of wich every single component depends on

#global landscape
#global cs
#global maxLand

dosaN=2~N
dosaK1=2A(K+1)

landscape=zeros(dosaN,1)

cs=zeros(Int,N,K+1)
cvx=rand(dosaK1,N)

#Random with repetition
for i=[1:N]
tmp=[1:i-1,i+1:N]
tmp1=randperm(N-1)
csli,:]=[i tmp[tmp1[1:K]]']
cs(i,:)=sort(cs(i,:))

end
maxval=0
minval=9

for i=[0:(dosaN-1)]

valor=0;
for j=[1:N]
ind=0;
for p=[1:(K+1)]
pm=int32(2*cs[j,p])
printin(i," “,pm," ",i&pm," ",ind|pm)

if (i & int32(2*(cs[j,p]-1))) >0
ind=(ind | 2%(p-1))

end
if (bitget(i,cs(j,p))==1)

ind=bitset(ind,p,1);

end

end

valor=valor+cvx[ind+1,j]

H H R

end

landscape[i+1]=valor/N
if (landscape[i+1]>maxval)
maxval=landscapel[i+1]

Brunswicker et al./Optimizing and Satisficing

MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A7

Brunswicker et al./Optimizing and Satisficing

maxLand=i+1
end
if (landscape[i+1]<minval)
minval=landscape[i+1]
end
end

dif=maxval-minval
landscape=(landscape.-minval)/dif

return landscape
end

Fitness.jl

function Fitness(stg)
Fitness Returns the fitness of an strategy

Returns:

fit ->fithess corresponding to the strategy of the agent

corresponds to the strategy of the agent + 1 into the landscape
Inputs:

sig -> strategy of the agent

global landscape
fit=landscape[stg+1]
return fit

end

A8 MIS Quarterly Vol. 43 No. 4—Appendices/December 2019

Brunswicker et al./Optimizing and Satisficing

Simula.jl

include("BestStrategy.jl")
include("Fitness.jl")
include("BitGet.jl")
include("BitSet.jl")

#

L

function Simula(strategy,ag,aex...)
Simula Performs a simulation depending on the Strategy

-> strategy=1 - Hill-climbing

-> strategy=2 - Hill-climbing with info about avg Fitness of the Landscape

Returns:

ag -> structure of agents

bestCases -> final benchmark

Inputs:

strategy -> 0= Hill-climbing - used as a baseline

1= Hill-climbing with restricted bits

2= Hill-climbing with explorers using max fitness found w restricted bits
3= Hill-climbing with explorers using avg fithess found w restricted bits
4= Hill-climbing using Best Cases from explorers

5= Hill-climbing from Best Cases extracted from the agents themselves
ag -> structure of agents

aex -> structure of the explorers or number of array of agents to consider for Best Cases

required global variables
landscape -> the vector representing the landscape
N -> number of different components of the Strategy
K -> number of components of which every single component depends on

H H R H®

global landscape
global N, K

global nBestCases

global _fixbits, _freebits,_fixval
global _dpivot

dosaN=2"N
dosaK1=27(K+1)

nagents=size(ag,1)

#counting iterations
_niter=0

if strategy==1 || strategy==0
Do Hill-climbing
canvi=true

while canvi
canvi=false
for i=1:nagents
if strategy==0
newStg=BestStrategy(strategy, ag|[i],[1:N])
else
newStg=BestStrategy(strategy, ag[i], _freebits)

MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A9

Brunswicker et al./Optimizing and Satisficing

end
if newStg != agfi].stg
ag[i].stg=newStg
canvi=true
end
end
_niter=_niter+1
end
return (ag, _niter)
end

if (strategy==2 || strategy==3 || strategy==4)
Do Hill-climbing with Explorers with the max fithess found by the explorers

ex=aex[1]
e=size(ex,1)
if (strategy==2 || strategy==3)
avgEx=0
fori=1:e
if strategy==
if Fithess(ex[i].stg)>avgEx
avgEx=Fitness(ex[i].stg)
end
else
avgEx=avgEx+Fitness(ex[i].stg)
end
end

if strategy==3
avgEx=avgEx/e
end
@printf("avgEx %4f\n",avgEx)
else
#Select the best cases found by explorers
bestCases=zeros(e)
fori=1:e
bestCases[i]=Fitness(ex[i].stg)
end
bestCases=sort(bestCases,rev=true)
end

canvi=true

while canvi
canvi=false
if _dpivot>0
#find minimum fitness
_minfit=9.0
for i=1:nagents
if Fitness(ag[i].stg)<_minfit
_minfit=Fitness(ag[i].stg)
end
end
end
for i=1:nagents
if ag[i].nPivot<ag[i].mPivot
newStg=BestStrategy(strategy, ag[i], _freebits)
if newStg != agfi].stg
ag[i].stg=newStg
canvi=true

A10 MIS Quarterly Vol. 43 No. 4—Appendices/December 2019

Brunswicker et al./Optimizing and Satisficing

else
@printf("agent %2d tBCase %2d nPivot %2d mPivot %2d \n",i,ag[i].tBCase,ag][i].nPivot,ag[i].mPivot)
if ((strategy== 2 || strategy==3) && Fitness(newStg)<avgEX) ||
(strategy==4 && Fitness(newStg)<bestCases[ag]i].tBCase])
@printf("Old strategy %7f New strategy %7f",ag[i].stg,newStg)
@printf("Aixo no hauria de passar Fitness(newStg) %7f avgEx %7f dif %7f
\n",Fitness(newStg),avgEx,avgEx-Fitness(newStg))
Jump
_jump=false
if _dpivot==0
#greedy
_jump=true
else
#only 1 proportional negative is considered
if (strategy==2 || strategy ==3)
_p=(Fitness(agl[i].stg)-_minfit)/(avgEx-_minfit)
else
_p=(Fitness(agl[i].stg)-_minfit)/(bestCases[ag][i].tBCase]-_minfit)
end
_p=1-_p
if rand()<=_p
_jump=true
end
end
if _jump==true
btC=int(rand()*4)+2 #bt 2..6 bits
for j=1:btC
bC=int(rand()*(length(_freebits)-1))+1
if BitGet(ag[i].stg,_freebits[bC])==0 # Flip
ag[i].stg=BitSet(ag[i].stg,_freebits[bC],1)
else
ag[i].stg=BitSet(ag[i].stg,_freebits[bC],0)
end
end
canvi=true
ag[i].nPivot=ag[i].nPivot+1
end
end
end
end
end
_niter=_niter+1
end
return (ag, _niter)
end
if (strategy==5)
Do Hill-climbing using Best Cases crowdsourced from the agents themselves
ex=aex[1]
e=size(ex,1)
bestCases=zeros(e)
fori=1:e
bestCases[i]=Fitness(ag[ex[i]].stg)
end
bestCases=sort(bestCases,rev=true)
fori=1:length(bestCases)
MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A11

Brunswicker et al./Optimizing and Satisficing

@printf("Best Case %2d %2.5f \n",i,bestCases]i])
end

avgF=0
for i=1:nagents
avgF=avgF+Fitness(ag[i].stg)
end
avgF=avgF/nagents
@printf("Init %3d Average fitness of Best Cases %2.5f Agents %2.5f\n",e,mean(bestCases[1:5]),avgF)

canvi=true
njump=0

while canvi
canvi=false
if _dpivot>0
#find minimum fitness
_minfit=9.0
for i=1:nagents
if Fitness(ag[i].stg)<_minfit
_minfit=Fitness(ag[i].stg)
end
end
end
@printf("We have _minfit \n")

for i=1:nagents
if ag[i].nPivot<ag[i].mPivot
newStg=BestStrategy(strategy, ag[i], _freebits)
if newStg != agfi].stg
ag[i].stg=newStg
canvi=true
else
@printf("Are we going to jump? Fitness(newStg) %5f bestCases[ag[i].tBCase] %5f
\n",Fitness(newStg),bestCases[ag][i].tBCase])
if Fithess(newStg)<bestCases[ag][i].tBCase]
@printf("Are we going to jump 27\n")
@printf("agent %2d tBCase %2d nPivot %2d mPivot %2d \n",i,ag[i].tBCase,ag][i].nPivot,ag[i].mPivot)
@printf("Fitness(newStg) %4f bestCases[ag][i].tBCase] %4f\n",Fitness(newStg),bestCases[ag][i].tBCase])
Jump
_jump=false
if _dpivot==0
#greedy
_jump=true
else
#only 1 proportional negative is considered
_p=(Fitness(agl[i].stg)-_minfit)/(bestCases[ag][i].tBCase]-_minfit)
end
_p=1-_p
if rand()<=_p
_jump=true
end
if _jump==true
btC=int(rand()*4)+2 #bt 2..6 bits
for j=1:btC
bC=int(rand()*(length(_freebits)-1))+1
if BitGet(ag[i].stg,_freebits[bC])==0 # Flip
ag[i].stg=BitSet(ag[i].stg,_freebits[bC],1)

H H R

A12 MIS Quarterly Vol. 43 No. 4—Appendices/December 2019

Brunswicker et al./Optimizing and Satisficing

else
ag[i].stg=BitSet(ag[i].stg,_freebits[bC],0)

end

end

canvi=true

ag[i].nPivot=ag[i].nPivot+1

njump=njump+1

end
end
end
end
end

bestCases=zeros(e)

fori=1:e
bestCases[i]=Fitness(ag[ex][i]].stg)

end

bestCases=sort(bestCases,rev=true)

_niter=_niter+1

end
avgF=0
fori=1:nagents
avgF=avgF+Fitness(ag[i].stg)
end
avgF=avgF/nagents

@printf(" ... Average fithess of Best Cases %2.5f Agents %2.5f jumps %4d\n",mean(bestCases[1:5]),avgF,njump)
fori=1:nagents
if Fitness(ag[i].stg)<bestCases[ag[i].tBCase]

#tobat

@printf(">>> agent %3d fithess %2.4f tBCase %2d fitness Best Case %2.4f nPivots %3d maxPivots %3d \n",
i,Fitness(ag[i].stg),ag[i].tBCase,bestCases[ag[i].tBCase],ag[i].nPivot,ag[i].mPivot)
end
end
return ag, bestCases[1:nBestCases]

return (ag, _niter)
end

MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A13

Brunswicker et al./Optimizing and Satisficing

NKtransp.jl

NKtransp -------
command line inputs
NKtransp.jl <nagents> <nexperiments> <maxTrials> <agentsRisk> <platformBits> <meanPivots> <forceAdopt>

nagents Number of agents to be deployed in the landscape - typically 1000

nexperiments Number of experiments to perform - bt 100..1000

maxSearchTrials Max number of Search Trials - bt 100..1000

agentsRisk 0-> conservative. First they exhaust all incremental opportunities then engage in long-jumps
1-> adaptive. They engage in adaptive behavior all the time and change their search radius.

platformBits Number of bits fixed devoted to the platform.

meanPivots Mean number of Pivots that agents will do. Normally distributed around meanPivots, std=1
speed Speed of the update of the social benchmark 0-> static -1 ->every iteration n-> every n iterations
#

include("../CreaLandscape.jl")

include("../BestStrategy.jl")

include("../Fitness.jl")

include("../Simul.jl")

global landscape, N, K

global _fixbits, _freebits,_fixval

N=16
K=0

#get parameters from command line args
if size(ARGS,1)!=7
@printf("Incorrent args in command line\n")
@printf("NKtransp.jl <nagents> <nexperiments> <maxSearchTrials> <agentsRisk> <platformBits> <meanPivots> <speed>
\n")
exit()
end

_nag=parse(Int,ARGS[1])
_nexp=parse(Int,ARGS[2])

_mST=parse(Int, ARGS[3]) #normally 5* _nexp
_agR=parse(Int, ARGS[4])

_nfixbits=parse(Int, ARGS[5])

_mPivots=parse(Int, ARGS[6])
_speed=parse(Int,ARGS[7])

#Fix bits and assign them a value

_fixbits=randperm(N)

_freebits=_fixbits[1:end-_nfixbits]

_fixbits=_fixbits[end-(_nfixbits-1):end]

_fixval=zeros(_nfixbits)

for i in 1:_nfixbits
_fixval[i]=round(Int,rand())

end

#File name
fname="NK-""B"string(_agR)"PI"string(_nfixbits)"Pv"string(_mPivots)"S"string(_speed)Libc.strftime("%Y-%m-%d %H:%M", time())

fOut=open(string(fname,".dat"),"w+")

A14 MIS Quarterly Vol. 43 No. 4—Appendices/December 2019

Brunswicker et al./Optimizing and Satisficing

fOutCsv=open(string(fname,".csv"),"w+")
fOutCsvD=open(string(fname,"D",".csv"),"w+")

write(fOutCsv,"N.Iter, #Bench, K, #Simu, Mean Fitness, Std Fitness, Search Distance\n")
write(fOutCsvD,"N.Iter, #Bench, K, #Simu, #Agent, Fitness, Search Distance\n")

if _nfixbits!=0
nB=6
B=[-101234]
else
nB=5
B=[01234]
end

avgFit=zeros(nB,N,_nexp)
miterF=zeros(nB,N,_mST)
niterF=zeros(nB,N,_mST)

type agent
stg::Int64
last::Int64
sD::Int32
mPivot::Int32
nPivot::Int32
end

ag=Array(agent,_nag)
aFitness=zeros(_nag)

cB=1
forbinB
for K=0:N-1
@printf("Benchmark %2d NKtransp K=%2d \n",b,K)
flush(STDOUT)
siter=0
for t=1:_nexp

#Create a landscape
landscape=CrealLandscape(N,K)

Put the agents on the floor
fori=1:_nag
init=round(Int,rand()*(2*N-1))
if b<0
#Baseline without restricted bits
ag[i]=agent(init,init,0,0,0) # 0..2*N -1
else
_ag=agent(init,init,0,0,0) # 0..2*N -1
for j=1:length(_fixbits)
_ag.stg=BitSet(_ag.stg,_fixbits[j],_fixvallj])
end
agil=_ag
end
ag[i].sD=3 #initially we set the Search Distance to 3
ag[i].-mPivot=round(Int,randn()+_mPivots)
ag[i].nPivot=Int(0)
end

MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A15

Brunswicker et al./Optimizing and Satisficing

ag, _niter, iterF=Simul(ag,b,_agR,_mST,_speed)

fori=1:_mST
miterF[cB,K+1,i] += iterFfi]
if iterF[i] !=0
niterF[cB,K+1,i] +=1
end
end

fori=1:_nag
printin(Fitness(ag(i].stg))
aFit=Fitness(ag[i].stg)
avgFit[cB,K+1,t]=avgFit[cB,K+1,t]+aFit
aFitnessJi]=aFit
writecsv(fOutCsvD,[_niter b K t i aFit ag[i].sD])
end
avgFit[cB,K+1,t]=avgFit[cB,K+1,t)/_nag
siter=siter+_niter

writecsv(fOutCsv,[_niter b Kt mean(aFitness) std(aFitness) mean(ag[].sD)])

printin(avgFit[K+1,t])
end
@printf("N. of iterations %3d, Fitness %4f, Search Distance %2d \n",siter/_nexp,mean(avgFit[cB,K+1,:]),mean(ag[].sD))
flush(STDOUT)
end
cB=cB+1

end

fori=1:nB
for j=1:N
for k=1:_mST
if niterF[i,j,k] =0
miterF[i,j,k]=miterF[i,j,k]/niterF[i,j,k]
else
miterF[i,j,k]=0
end
end
end
end
serialize(fOut,avgFit)
serialize(fOut,miterF)
close(fOut)
close(fOutCsv)
close(fOutCsvD)

#for i=1:2"16
@printf("Landscape %5d %7.3f \n ",i,landscapeli])
#end

#@printf("Max landscape min landscape %7.3f %7.3f %7.3f\n",maximum(landscape),minimum(landscape),mean(landscape))

A16 MIS Quarterly Vol. 43 No. 4—Appendices/December 2019

Brunswicker et al./Optimizing and Satisficing

References

Billinger, S., Stieglitz, N., and Schumacher, T. R. 2013. “Search on Rugged Landscapes: An Experimental Study,” Organization Science
(25:1), pp. 93-108.

Gilette, F. 2011. “The Rise and Inglorious Fall of Myspace,” Bloomberg. Com (https://www.bloomberg.com/news/articles/2011-06-22/the-rise-
and-inglorious-fall-of-myspace).

Greve, H. R. 1998. “Performance Aspirations and Risky Organizational Change,” Administrative Science Quarterly (43:1), pp. 58-86.

Greve, H. R. 2002. “Sticky Aspirations: Organization Time Perspective and Competitiveness,” Organization Science (13:1), pp. 1-17.

Hu, S., Blettner, D., and Bettis, R. A. 2011. “Adaptive Aspirations: Performance Consequences of Risk Preferences at Extremes and
Alternative Reference Groups,” Strategic Management Journal (32:13), pp. 1426-1436.

Lant, T. K. 1992. “Aspiration Level Adaptation: An Empirical Exploration,” Management Science (38:5), pp. 623-644.

Levinthal, D. A. 1997. “Adaptation on Rugged Landscapes,” Management Science (43:7), pp. 934-950.

March, J. G. 1981. “Variable Risk Preferences and Adaptive Aspirations,” Journal of Economic Behavior and Organization (9:1), pp. 5-24.

Rivkin, J. W. 2000. “Imitation of Complex Strategies,” Management Science (46:4), pp. 824-844.

Woodard, C. J., Ramasubbu, N., Tschang, F. T., and Sambamurthy, V. 2013. “Design Capital and Design Moves: The Logic of Digital
Business Strategy,” MIS Quarterly (37:2), pp. 537-564.

MIS Quarterly Vol. 43 No. 4—Appendices/December 2019 A17

