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Complexity is all around us in this increasingly digital world.  Global digital infrastructure, social media,
Internet of Things, robotic process automation, digital business platforms, algorithmic decision making, and
other digitally enabled networks and ecosystems fuel complexity by fostering hyper-connections and mutual
dependencies among human actors, technical artifacts, processes, organizations, and institutions.  Complexity
affects human agencies and experiences in all dimensions.  Individuals and organizations turn to digitally
enabled solutions to cope with the wicked problems arising out of digitalization.  In the digital world, com-
plexity and digital solutions present new opportunities and challenges for information systems (IS) research.
The purpose of this special issue is to foster the development of new IS theories on the causes, dynamics, and
consequences of complexity in increasing digital sociotechnical systems.  In this essay, we discuss the key
theories and methods of complexity science, and illustrate emerging new IS research challenges and oppor-
tunities in complex sociotechnical systems.  We also provide an overview of the five articles included in the
special issue.  These articles illustrate how IS researchers build on theories and methods from complexity
science to study wicked problems in the emerging digital world.  They also illustrate how IS researchers lever-
age the uniqueness of the IS context to generate new insights to contribute back to complexity science.
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Introduction

When we conduct a search on Google, it returns hundreds, of
thousands, results instantaneously.  The results not only
reflect the interests of the one who is doing the search, but
also the millions of internet users who created or clicked on
hyperlinks of websites.  As more users search, link, and click
with similar keywords, the results will continue to change
according to user location and search time.  A search for
“Korean restaurants” in Munich, Germany, for example, gives
different results from a search in Cleveland, OH, USA.  Con-
ducting the same search a day or two later also produces
different results.  A simple Google search result is an emer-
gent property, a complex web of interactions among users,
websites, topics, advertisers, and many other social or tech-
nical entities.  In short, our daily experience of using mundane
digital tools is a dynamic emergent outcome of complex
sociotechnical systems.

As early as 2010, the world-wide production of transistors has
exceeded that of rice, and is much cheaper (Lucas et al. 2012). 
Devices—large and small—powered by microprocessors and
connected by the internet are filling every inhabited corner of
the earth.  Some of these devices are not just passively
waiting for commands; equipped with a powerful artificial
intelligence engine, they often act on their own.  We already
see autonomous vehicles on the streets interacting with traffic
signals that respond to changing traffic patterns, in the midst
of human-controlled vehicles and pedestrians.  Sprinklers are
connected to the weather service on the internet to control the
amount of water on a lawn.  The temperature of millions of
houses is controlled by Nest connected to the Google Home
Assist service.  Connected speakers recommend different
music playlists based on the time, location, and, of course,
your preference.  Social network services also enable every
user as a potential content creator on the internet.  Once
created, user-generated content can be liked, shared, and
mashed with other content by other users, often creating
unpredictably complex forms of diffusions.  Digital platform
ecosystems such as Uber and AirBnB connect millions of
users and providers globally.  More than 80% of movies
watched on Netflix are recommended by algorithms.2

These examples illustrate truly astonishing advances from the
humble start of computers in organizations in the early 20th

century.  After merely a few decades, what once seemed to be
glorified calculators have evolved into digital technologies
that permeate our lives and work.  These digital technologies
in turn foster new sociotechnical systems such as wikis, social

media, and platform ecosystems that are fundamentally
changing the way people work and live.

Not every technological invention has such a transformational
impact.  What set apart digital technologies?  At the heart of
digital technologies is symbol-based computation.  Bistrings
(0s and 1s) provide a standard form of symbols to encode
input, process, and output of a wide variety of tasks (Faulkner
and Runde 2019).  They reduce the design specificity of hard-
ware for operationalizing the symbol-based computation. 
Furthermore, simplicity of bitstrings eases the effort to shrink
the size, reduce the cost, and increase the processing power of
hardware.  Symbol-based computation provides a generali-
zable and applicable mechanism to unite the operations of
matter and the abstract mental processes (Lovelace 1842).  It
lays the foundation for digital technology to rapidly advance
beyond the function of a calculator.  More importantly,
symbol-based computation sets in motion the emergence of
complex sociotechnical systems.

Emanating from symbol-based computation are a few
complexity-inducing characteristics of digital technologies.

• Embedded:  as described by the vision for symbol-based
computation (Lovelace 1842; Shannon 1993, Turning
1950), digital capabilities are increasingly embedded in
objects that previously have pure material composition
(Yoo et al. 2012).  Digital capabilities can encode and
automate abstract cognitive processes for converting new
information into adaptive changes of objects.  They also
enable objects to provide decision support to adaptive
cognitive processes of social actors.  

• Connected:  objects embedded with digital capabilities
and users of such objects can be connected into webs of
sociotechnical relations (Sarker et al. 2019) because
symbol-based computation homogenizes data (Yoo
2010).  When information is shared in the webs of socio-
technical relations, abstract cognitive processes encoded
in objects or possessed by social actors become mutually
dependent.

• Editable:  digital technologies are editable (Kallinikos et
al. 2013; Yoo 2012) due to symbol-based computation. 
This editability allows increasingly diverse cognitive
processes to be introduced into the webs of socio-
technical relations.  Recurrent adaptation of diverse,
connected, and mutually dependent objects and social
actors can amplify or diminish an initial change in a
sociotechnical system, producing outcomes that defy
simple extrapolation from the initial change (Arthur
2015; Holland 1995; Page 2010).  Complexity, therefore,
becomes a salient attribute of sociotechnical systems.

2See https://mobilesyrup.com/2017/08/22/80-percent-netflix-shows-
discovered-recommendation/.
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• Reprogrammable:  through the separation of hardware
and software of symbol-based computation, digital tech-
nology is reprogrammable (Yoo et al. 2010).  The same
hardware can perform different functions depending on
the software that runs on the device.

• Communicable:  digital technologies are communicable
by following a set of agreed-upon protocols (Lyytinen
and King, 2006; Yoo 2010).  With the pervasive diffu-
sion of digital technologies, they now form a global
digital infrastructure (Tilson et al. 2010).

• Identifiable:  each and every device connected to the
digital infrastructure is uniquely identifiable through its
own unique address (Yoo 2010).  The increasing digital
penetration leads to a higher degree of identifiability,
allowing for more granular manipulation levels of digital
objects.

• Associable:  digital objects are associable through shared
traits.  The associability of distributed heterogeneous
devices and data allows one to identify emerging patterns
across different realms and geographies in a way that was
simply not possible in the past.

Digital technologies not only give rise to complex sociotech-
nical systems; they also distinguish sociotechnical systems
from other complex physical or social systems.  While com-
plexity in physical or social system is predominantly driven
by either material operations or human agency, complexity in
sociotechnical systems arises from the continuing and
evolving entanglement of the social (human agency), the
symbolic (symbol-based computation in digital technologies),
and the material (physical artifacts that house or interact with
computing machines).  The functions of digital technologies
and the roles of social actors are perpetually defined and
redefined by each other (Faulkner and Runde 2019; Zittrain
2006).  This sociotechnical entanglement limits the generali-
zability of complexity insights obtained from nondigital
systems to complex digital systems.  Furthermore, while
material operations or human agency either increase or
dampen complexity in physical or social systems, digital tech-
nologies can both mitigate and intensify complexity.  This is
because individuals and organizations engaged with complex
sociotechnical systems often turn to digital technologies (e.g.,
data analytics) for solutions to complex problems.  Yet, the
application of a solution can instigate a new round of digitally
enabled interactions that diminish the intended effect of the
solution.  This dual effect of digital technologies on com-
plexity can produce dynamic interaction patterns and out-
comes that are qualitatively different from those in other
complex systems.  

The distinct effects of digital technologies on complex socio-
technical systems present an important opportunity for infor-
mation systems (IS) researchers to extract novel insights
regarding the nature and relevance of digital technologies.  IS
researchers can apply theories and methods from complexity
science to model observations that defy simple extrapolation
from initial changes in a sociotechnical system.  In this essay,
we introduce key complexity theories such as emergence,
coevolution, chaos, and scalable dynamics as the most likely
foundation for IS researchers to rethink predictability, caus-
ality, boundary, and durability of observations in the digital
world.  Subsequently, we explain how the centrality of
symbol-based computation in IS research paves the way for
IS-specific research themes to extend complexity science. 
The articles in this special issue are briefly described to illus-
trate a few prominent themes such as IS development for
rapidly changing requirements and using digital technologies
to steer or tame complexity.

Complexity Science:  Key Theories
and Methods

Complexity science’s origins lie in 50 years of research into
nonlinear dynamics in natural sciences and spans a variety of
scholarly disciplines including biology (Kauffman 1993),
chemistry (Prigogine and Stengers 1984), computer science
(Holland 1995; Simon 1962), physics (Gell-Mann 1995), and
economics (Arthur 1989).  Developments across disciplines
over time resulted in a meta-theoretical framework within
which several theoretically consistent approaches and
methods can be integrated.

Complexity science theories and methods combine different
epistemologies (i.e., positivism, interpretivism, and realism)
to provide novel opportunities to question assumptions (e.g.,
equilibrium, stability, etc.), manage tensions and paradoxes,
and rethink the way we view many sociotechnical phenomena
at the center of our field.  Their value is particularly promi-
nent when the research community faces new phenomena and
questions that do not lend themselves well to the traditional,
reductionist approaches.

Complexity Drivers and States

Complexity is an attribute of systems made up of large num-
bers of diverse and interdependent agents3 that influence each

3These could range from molecules to individual human beings to organized
collectives.
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Figure 1.  States of Complex Systems (Benbya and McKelvey 2011) 

other in a nonlinear way and are constantly adapting to inter-
nal or external tensions (Holland 1995).  Because such
systems are constantly evolving, they have a large degree of
unpredictability.   They cannot, therefore, be understood by
simply examining the properties of a system’s components.

Four key characteristics influence the level of complexity in
a system:  (1) diversity, (2) adaptiveness, (3) connectedness,
and (4) mutual dependency among agents in the system (e.g.,
Cilliers 1998; Holland 1995).  The nonlinear interplay of the
above four characteristics coupled with increased tension in
the form of external or internal challenges and/or oppor-
tunities drive the system from one state to another.

A system can exist or fluctuate between three states or
regions:  stable at one extreme, chaos at the other, with an in-
between state called the edge of chaos (Kauffman 1995;
Lewin 1992).  Figure 1 provides an illustration of the three
states.

Specifically, in the stable state, the diversity, adaptiveness,
connectedness,and mutual dependency of agents in the system
are all at low levels.  Consequently, adaptive tensions are low
(Page 2010) and complexity is benign (Tanriverdi and Lim
2017).  The system rapidly settles into a predictable and
repetitive cycle of behavior.  In such stable systems, novelty
is rare.  There is a tendency for stable systems to ossify.

As the diversity, adaptiveness, connectedness, and mutual
dependency levels of systems reach moderate levels, the com-

plexity level increases (Page 2010).  Systems with increased
levels of complexity enter the so-called “edge of chaos” state
or a region of emergent complexity (Boisot and McKelvey
2010).  By staying in this intermediate state, these systems
never quite settle into a stable equilibrium but never quite fall
apart.  They exhibit continuous change, adaptation, coevolu-
tion and emergence (Kauffman 1993; Lewin 1992).

Increasing levels of tensions, beyond a certain threshold,
might result in chaos or extreme outcomes (e.g., catastrophes,
crises, etc.) which exhibit fractals, power laws, and scalable
dynamics.  Chaotic systems never really settle down into any
observable patterns.  Since they are sensitive to initial condi-
tions, they can amplify exponentially and have monumental
consequences (Gleick 1987).

Complexity Theories

As outlined above, many living systems (e.g., organisms,
neural networks, ecosystems) on the edge of chaos appear to
constantly adapt and self-organize to create configurations
that ensure compatibility with an ever-changing environment. 
This perpetual fluidity is regarded as the norm in systems on
the edge of chaos; it can lead to processes and outcomes as
diverse as phase transitions, catastrophic failures, and unpre-
dictable outcomes (see Table 1).  Complexity theories such as
emergence, coevolution, chaos, and extremes, as well as
scalable dynamics, offer an explanation of such processes and
outcomes.
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Table 1.  Processes and Outcomes of Complex Systems

Complexity Theories Processes Outcomes

Emergence • Disequilibrium situations:  tensions,
triggers and small events outside the norm 

• Positive feedback and bursts of
amplification

• Phase-transitions
• Self-organization 

• Unpredictable outcomes:  new structures,
patterns, and properties within a system (e.g.,
distributed leadership emergence), a new level
of analysis (e.g., a network), or a collective
phenomenon (e.g., collective action)

• Emergence can take two forms:  composition or
compilation

Coevolution • Interdependency and boundary-crossing
interrelationships

• Multilevel dynamics
• Bidirectional or two-way causality

• Mutual influences
• Reciprocal adaptations and changes over time

Chaos • Sensitivity to initial conditions
• Constrained trajectory (e.g., strange

attractor)
• Time-dependency and irreversible

dynamics 

• Catastrophic failures (e.g., systemic risk, cyber-
security breaches)

• Escalation of causes leading to disastrous
societal consequences (e.g., disrupting lives on
a large scale)

Scalable Dynamics • Instability and large variations
• Single cause leading to a cascade of

interconnected events

• Self-similarity across scales
• Positive or negative extreme outcomes
• Fractal dynamics 
• Power laws 

Emergence

Emergence is a dynamic process of interactions among
heterogeneous agents that unfolds and evolves over time,
resulting in various kinds of unexpected novel individual- and
group-level configurations and/or broader social structures
(Benbya and McKelvey 2016).  Complexity and organization
scholars have theorized such a dynamic process for some time
(Kozlowski et al. 2013; Plowman et al. 2007).

Systems-wide changes in natural open systems revealed how
unorganized entities in a given system, subjected to an exter-
nally imposed tension, can engage in far-from-equilibrium
dynamics.  The entities can therefore self-organize into dis-
tinct phase transitions leading to a new higher-level order
(Prigogine and Stengers 1984).

Social systems put under tension, through recession, crisis,
organizational change, and so forth, can exhibit similar phase
transitions and emergent outcomes.  As such, many social
scientists have made a direct mathematical parallel between
physical and social systems to deduce the process mech-
anisms inherent in micro interaction dynamics that yield the
higher-level order and its emergent novel outcomes.  They
have identified two forms of emergence:  composition or
compilation (Kozlowski and Klein 2000).  In composition
models, emergent processes allow individuals’ perceptions,
feelings, and behaviors to become similar to one another. 

Compilation models, on the other hand, capture divergence. 
They characterize processes in which lower-level phenomena
are combined in complex and nonlinear ways to reflect unit-
level phenomena that are not reducible to their constituent
parts.  The discovery of emergence involves either a post hoc
analysis of time series data (e.g., system behavior) and
conceptual tools that allow scholars to verify the existence of
emergence dynamics in systems, or an analytical mapping of
the sequential phases of emergence dynamics (e.g., Plowman
et al. 2007).

Interactions among sociotechnical entities yield many
emergent outcomes in information systems.  Examples
include the collaborative creation of online order and tech-
nology affordances (e.g., Nan and Lu 2014), IS alignment
(Benbya et al. 2019), and new configurations among organi-
zation, platform, and participant dimensions (Benbya and
Leidner 2018).  An emergence perspective offers a lens to
understand many unpredictable sociotechnical phenomena
that span individual, group, organizational, and societal levels
in the context of widening digitalization.

Coevolution

Coevolution refers to the simultaneous evolution of entities
and their environments, whether these entities being
organisms or organizations (McKelvey 2004).  Ehrlich and
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Raven (1964) introduced the term coevolution to characterize
the mutual genetic evolution of butterflies, and associated
plant species.  Such a process encompasses the twin notions
of interdependency and mutual adaptation, with the idea that
species or organizations evolve in relation to their environ-
ments, while at the same time these environments evolve in
relation to them.  

In addition, to the above characteristics, coevolutionary
processes have three main properties.  First, coevolutionary
phenomena are multilevel.  They encompass at least two dif-
ferent levels of analysis.  Second, coevolutionary phenomena
take time to manifest.  This implies that longitudinal designs
are necessary to understand coevolutionary processes.  Third,
bidirectional causality or two-way relationships (e.g., Yan et
al. 2019) are central to coevolutionary processes.

In IS research, coevolution theory has been used to theorize
the codesign of organizations and information systems
(Nissen and Jin 2007; Vidgen and Wang 2009), the alignment
of business and IT (Benbya et al. 2019;  Benbya and
McKelvey 2006b; Tanriverdi, Rai, and Venkatraman 2010;
Vessey and Ward 2013), coevolution of business strategy
with the competitive landscape (Lee et al. 2010); and coevo-
lution of platform architecture, governance, and environ-
mental dynamics (Tiwana et al. 2010).

Chaos

Chaos theory was initially developed with Lorenz’s (1963)
work in response to an anomaly in atmospheric science. 
Chaotic systems are sensitive to initial conditions.  This
sensitivity to initial conditions, called the “butterfly effect,”
implies that even a slight change, analogous to a butterfly’s
wing-beat, can lead to radical consequences on a much larger
scale.

In addition to being unstable and sensitive to initial condi-
tions, chaotic systems are deterministic because the system’s
trajectory is constrained.  Such chaotic systems possess a
strange attractor, a value or a set of values that system vari-
ables tend toward over time but never quite reach (Lorenz
1963).  Sudden discontinuous shifts in chaotic systems drive
them from one attractor to another, leading thereby to catas-
trophes and disastrous societal consequences.

Chaos theory has been used to theorize social and organi-
zational dynamics as nonlinear chaotic systems by virtue of
their sensitivity to initial conditions.  For example, McBride
(2005) used concepts of chaos theory to study the dynamic
interactions between information systems and their host
organizations.  Guo et al. (2009) use chaos theory to develop

a framework to illustrate blog system dynamics arising from
micro (individual blog traffic dynamics) and macro (blogo-
sphere structure) levels.  Hung and Tu (2014) provide an
empirical analysis of the applicability of chaos theory to
explain technological change processes.  Tanriverdi and Lim
(2017) theorize about IS-enabled complexity vigilance
capabilities for detecting whether a complex ecosystem
approaches the edge of chaos/discontinuity.

Scalable Dynamics, Fractals,
and Power Laws

Scalable dynamics refer to self-similarity of underlying
patterns across different levels of analysis (Manderbrot et al.
1983).  This notion of self-similarity across scales has become
a core tenet of complexity science and has led to various
theories to characterize how a single cause can scale up into
positive or negative extreme events and drive similar out-
comes at multiple levels (for  reviews, Adriani and McKelvey
2006; Benbya and McKelvey 2011).

The dimensionality of such self-similarity across scales can be
measured using a mathematical mapping technique referred
to as fractals.   In other terms, fractals measure the “density”
of a nonlinear data set, such as stock market behaviors or the
shape of a coastline (Casti, 1994).  When such measures are
taken at increasing orders of magnitude, each fractal dimen-
sion is “self-similar” to the ones before and after it, meaning
that the underlying patterns are the same across levels of
analysis.  These relationships are always governed by a power
law (Cramer 1993).

Fractal analysis has helped describe and explain different
changes that occur within similar patterns at multiple scales
across organizations, markets, and industries.  For example,
Farjoun and Levin (2001) use a fractal analysis to characterize
industry dynamism over time and capture the rate, amplitude,
and unpredictability of change.

Methods 

Research on complex sociotechnical systems has used a
variety of methods, some are well established while others are
just emerging.  IS scholars have studied dynamics of complex
systems by using established research methods such as longi-
tudinal qualitative case studies (e.g., Benbya and Leidner
2018; Paul and McDaniel 2016), morphogenetic approaches
(e.g., Njihia and Merali, 2013), statistical methods for longi-
tudinal data analyses (e.g., Nan and Lu, 2014; Tanriverdi and
Du 2020; Tanriverdi, Roumani, and Nwankpa 2019).  How-
ever, complex sociotechnical systems that operate far from
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equilibrium conditions also present challenges for some estab-
lished research methods such as closed-form analytical
modeling methods.  As such, newer methods have emerged to
study under nonequilibrium conditions, complex interactions
among multiple variables, and multilevel causality.  Those
new methods include agent-based simulation, the qualitative
comparative analysis (QCA) method, and dynamic network
modeling based on graph theories.

Agent-based simulation utilizes symbol-based computation to
precisely express a theory about a complexity concept such as
agents, interactions, and the environment involved in an emer-
gent process.  The computational expression can then be used
to simulate and test the theory in controlled and replicable
ways.  This methodological approach was advanced by the
Santa Fe Institute (SFI), a multidisciplinary research center
created in the mid-1980s (Waldrop 1992).  Applications of
simulation methods include genetic algorithms (Holland
1995), cellular automata (Krugman 1996), NK landscape
models (Kauffman 1993), and a combination of several
approaches found in agent-based models (Carley and Svoboda
1996).

The QCA method allows researchers to identify how multiple
causal attributes combine into distinct configurations to
produce an outcome of interest, and to assess the relative
importance of each configuration to the same outcome (Ragin
and Rubinson 2009).  It relies on the set-theoretic approach
and Boolean algebra to conceptualize and analyze causal
complexity described as “equifinality, conjunctural causation,
and causal asymmetry” (Ragin 2000, p. 103).  Scholars from
different social science disciplines including the IS field have
advocated the use of QCA to embrace causal complexity that
is typical of social or sociotechnical systems (see El Sawy et
al. 2010; Fichman 2004; Misangyi et al. 2017; Park et al.
2020).
 
Dynamic network modeling focuses on interactions that are
the root cause of complexity in a phenomenon.  Agents and
their interactions are modeled as nodes and edges in a net-
work.  Dynamic network modeling enables researchers to
identify patterns of interactions among a population of agents
in a system.  Scholars have been using tools like spatio-
temporal network modeling to understand how new edges are
formed (George et al. 2007; Taylor et al. 2010).  For example,
complex patterns of evolution in a digital platform ecosystem
can be modeled as a network of third-party complements and
boundary resources (Um et al. 2015).  Here, third-party com-
plementary products are modeled as agents interacting with
one another through shared boundary resources.  Scholars
have used a similar approach to explore the relationship
between consumers and brands (Zhang et al. 2016) and to
understand the emergent nature of social relationships using

relational event network (Schecter et al. 2017).  Another
important tool based on dynamic network modeling is net-
work community (Sekara et al. 2016).  A network community
is set of densely connected nodes (Newman and Girvan
2004).  For example, scholars have used network community
to discover dynamic emerging patterns of routines (Pentland
et al. 2020).

Implications of Complexity
for IS Research 

The increased levels of complexity in sociotechnical systems
in the context of widening digitalization creates numerous
opportunities and challenges for IS research.  Due to the
distinct effects of digital technologies on complex socio-
technical systems, simply replicating middle-level theories
and models for complex physical, biological, or social
systems would not fully capture IS-specific complexity issues. 
A fruitful approach for IS researchers is to use complexity
science as a meta-theoretical lens to rethink a few funda-
mental research challenges (see Table 2).  In this section, we
discuss a few of the challenges as exemplified by the fol-
lowing questions:

• Under what conditions is prediction feasible in complex,
sociotechnical systems?

• What is the nature of causality in complex, socio-
technical systems?

• How can researchers circumscribe the boundaries of a
complex, sociotechnical system to study? 

• How durable is newly discovered knowledge in complex,
sociotechnical systems?

Limits to Prediction in Complex 
Sociotechnical Systems

Prediction of potential outcomes in a given sociotechnical
system is one of the perennial questions in IS literature.  It has
become even more important with recent developments in big
data and artificial intelligence (AI) technologies.  However,
complexity of sociotechnical systems present major chal-
lenges for prediction.  Interactions among a diverse set of
connected, mutually dependent, and adaptive agents in a
sociotechnical system lead to the emergence of unexpected
outcomes that defy the extrapolation techniques at the heart of
prediction models.  Properties of complex sociotechnical
systems, such as nonlinearity, self-organization, coevolution,
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Table 2.  Implications of Complexity for IS Research

Issue Implication for IS Research

Prediction of behaviors
of complex systems

There are limits to the prediction of behaviors of complex sociotechnical systems.  System-level
properties such as non-decomposability, nonlinearity, self-organization, and coevolution
inevitably lead to emergent, unpredictable system behaviors.

Prediction efforts of IS research should focus not on the ability to foresee specific, well-defined
system events in space and time (i.e., paths), but on the ability to anticipate the range of
possible behaviors the system might adopt (i.e., patterns).

Nature of causality in
complex systems

A linear view of causality between inputs and outputs of the complex sociotechnical system is
inadequate.  There are multiple causal mechanisms and different forms of causality in complex
sociotechnical systems.

Three distinguishing features of causality in complex sociotechnical systems are:  (1) conjunc-
tion, which means that outcomes rarely have a single cause but rather result from the inter-
dependence of multiple conditions; (2) equifinality, which entails more than one pathway from an
input to an outcome; and (3) asymmetry, which implies that attributes found to be causally
related in one context may be unrelated or even inversely related in another context.

Boundaries of complex
systems

It is challenging to accurately circumscribe the boundaries of a complex sociotechnical system
because complex systems are open systems.

IS researchers can potentially address this challenge by building on Salthe’s (1985) three-level
specification in which agents of a complex sociotechnical system are defined by their com-
ponents, a focal level of action, and by their contexts (Koestler 1978; Salthe 1989, 1985).

Durability of new
knowledge claims in
complex systems

Patterns of causal relationships in complex sociotechnical systems evolve over time.  Thus, new
knowledge discovered in one state of the system could be transient and inapplicable in another
state of the system.  

In making claims to new knowledge in studies of complex sociotechnical system, IS researchers
should report how frequently the system might be going through state changes and how durable
the newly discovered knowledge might be.  In addition, if the study time frame involves any
phase transition of the complex system, researchers should report how the causal relationships
might differ qualitatively before, during, and after the phase transition.

bifurcations, etc., lead inevitably to unpredictable states. 
Reductionist approaches that assume away some elements and
interactions in the complex system could make formal predic-
tion models feasible to implement.  Although some behaviors
of complex systems can be understood through formal
models, those models cannot necessarily predict how a given
system will evolve.  Reductionist formal models also run the
risk of generating biased, inaccurate predictions.  This leads
to an important question:  Under what conditions is it feasible
to make predictions in complex sociotechnical systems?  Two
observations can be made on this.
 
First, predictions in complex sociotechnical systems requires
us to distinguish between patterns and path (Dooley and Van
de Ven 2000).  Path is the specific temporal trajectory, or set
of points, that a system follows moment-by-moment; pattern
is the distinctive (often visual) temporal shape that emerges

when one views the path over a long period of time, plotted
in a particular manner.  Linear systems are predictable in both
path and patterns.  Chaotic systems are predictable in patterns,
but not path (Bohm 1957).  Although accurate prediction of
a chaotic system’s path through a space of possible states is
very difficult because of sensitivity to initial conditions, clear
overall patterns are nevertheless observable because the
system’s trajectory is constrained.

Second, apart from deterministic chaotic systems that remain
predictable, what complexity science suggests is the inevit-
ability of surprise (McDaniel 2004).  Prediction becomes not
the ability to foresee specific, well-defined events in space
and time (i.e., path) but, at best, the ability to anticipate the
range of possible behaviors the system might adopt (i.e.,
patterns).  This then leads to the development of diverse con-
figurations and states, or a portfolio of inter-related decision
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strategies that can be employed, as future possibilities unfold
to become current realities.  While predictability remains
limited given complexity, anticipation remains fluid with re-
spect to changing conditions and tensions, thereby facilitating
adaptive action and survival (Boisot and McKelvey 2007).

Nature of Causality in Complex
Sociotechnical Systems

The notion of causality is central to understanding the nature
of interactions among heterogeneous elements in complex
sociotechnical systems as the outcomes produced by such
interactions (Sarker et al. 2019).  Subsequently, the notion of
causality is central to building theories for the IS discipline
(Gregor and Hokorva 2011; Rivard 2014).  Complexity
science offers significant ways to extend prior thinking on the
nature of causality in complex sociotechnical systems.
 
Conventional approaches dominant (explicitly or implicitly)
in current models of thinking and analytical techniques, such
as generalized linear models, often treat causality as an unob-
servable “black box,” and focus on discovering whether there
is a systematic relationship between inputs and outputs by
relying on additive, unifinal, and symmetric notions of caus-
ality (Fiss 2007; Meyer et al. 2005; Mohr 1996).  Such a
linear view of causation remains limited and inadequate for
explaining increased nonlinear interactions in digitized envi-
ronments with processes such as coevolution, emergence, and
self-organization as they involve multiple causal mechanisms
and different forms of causality.

For instance, coevolutionary dynamics involve interactions
among the components of a social system (such as a group, a
community, or an organization), which in turn interacts with
its environment.  These multilevel interactions create or
generate circular changes over time in one or several compo-
nents of the system (Morgan 1923).  In such contexts,
unidirectional causation is not a good fit; rather, bidirectional
causation, where the focus is on feedback dynamics in order
to promote the key links among the components, is necessary
(e.g., Yan et al. 2019).  

Similarly, emergence, which spans multiple levels and leads
to novel emergents, can be also envisioned as a positive feed-
back process starting with (1) bottom-up dynamic interaction
among lower level entities (i.e., individuals, teams, units)
which—over time—yield phenomena that manifest at higher,
collective levels, (upward causation)  (Kozlowski et al. 2013),
and (2) an emergent higher collective level that influences the
components’ behaviors on the lower level from which it
simultaneously emerges (downward causation) (Campbell
1974; Kim 1992).  Thus, complexity theory brings to light

notions of multidirectional causality (e.g., upward, downward,
and circular causality), uncertainty, and, hence, a sense of the
multiplicity of possible outcomes.

Building on this insight, IS scholars need to account for com-
plex causality with its three distinguishing features:  (1) con-
junction, which means that outcomes rarely have a single
cause but rather result from the interdependence of multiple
conditions; (2) equifinality, which entails more than one
pathway to a given outcome; and (3) asymmetry, which
implies that attributes found to be causally related in one
context may be unrelated or even inversely related in another
(Meyer et al. 1993).

Boundaries of a Complex System and
Implications for Multilevel IS Research

Because complex sociotechnical systems are open systems,
we cannot accurately determine the boundaries of the system.
In order to model a system precisely, we, therefore, have to
model each and every interaction in the system, each and
every interaction with the environment—which is, of course,
also complex—and each and every interaction in the history
of the system (Cilliers 2001).  Since there are also relation-
ships with the environment specifying clearly where a bound-
ary could be, this is not obvious.  Salthe’s (1985) three-level
specification in which agents are defined by their compo-
nents, a focal level of action, and their contexts (Koestler
1978; Salthe 1989, 1993) helps to address this endeavor.

According to this basic triadic specification, complex socio-
technical systems can be best described at three adjacent
levels of interactions:  (1) the level where we actually observe
it, or where it can be meaningfully perceived (focal level);
(2) its relations with the parts described at a lower level
(usually, but not necessarily always, the next lower level); and
(3) to take into account entities or processes at a higher level
(also usually, but not always, the next higher level), in which
the entities or processes observed at the focal level are
embedded.

Such a perspective, therefore, suggests that in order to
theorize complex sociotechnical outcomes across levels it is
necessary to (1) articulate the emergent collective construct,
a construct’s lower-level entities, and the constraints at the
higher level related to the role of a selective environment;
(2) zoom in to consider both focal entities, interactions among
lower-level entities their internal structures and functions and
to zoom out to consider both the focal entities and their exter-
nal contexts; and (3) specify what kinds of top-down influ-
ence or bottom-up process are potentially relevant and assess
the likelihood of interaction among the different kinds.
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Durability of New Knowledge Claims in
Complex Sociotechnical Systems

As a complex sociotechnical system dynamically coevolves
with changes in its environment and its constituent compo-
nents, the pattern of causal relationships within the complex
system can also evolve over time.  This raises a question
about the durability of new knowledge discovered about
causal relationships in a complex sociotechnical system. 
Complexity science conceives the development of new
knowledge on the causal relationships as an evolutionary
process of proposing conjectures (blind variation) followed by
the refutation (selective elimination) of those conjectures that
are empirically falsified (Campbell 1974; Popper 1983).  This
implies that over time, based on the cumulative research on
complex systems, the collective view of the phenomena
reflects the improved validity of the findings until proven
otherwise, while the more invalid ones are abandoned.  If the
states of a complex sociotechnical system change frequently,
however, the newly discovered knowledge in one state of the
system could be transient and not applicable to the next state
of the system.  Thus, in making claims to new knowledge in
studies of a complex, dynamically evolving sociotechnical
system, it is important for researchers to report how fre-
quently the complex sociotechnical system might be going
through state changes and how durable the newly discovered
knowledge might be.  If the findings about the complex socio-
technical system are consistent over time, the new knowledge
could be valid and durable during that time period.

In addition, if a complex sociotechnical system goes through
a phase transition, the existing roles, structures, and causal
relationships in the system can dissipate and new ones can
emerge, resulting in a qualitatively different set of causal
relationships (Tanriverdi and Lim 2017).  Thus, it is also
important for researchers to assess if the study time frame
involves any phase transition of the complex sociotechnical
system, and how the causal relationships might differ quali-
tatively before, during, and after the phase transition.  For
example, Tanriverdi and Lim (2017) posit that qualitatively
different types of IS capabilities are relevant to firm perfor-
mance before, during, and after a phase transition of a com-
plex sociotechnical system.

Background and the Contents
of the Special Issue

This special issue is an outcome of on-going dialogues among
IS scholars who have been interested in complexity.  Initially,
to bring together interested scholars and foster further interest,
Tanriverdi, Nan, and Benbya organized research symposiums

on managing in complex adaptive business systems.  The
inaugural symposium was held at the University of Texas at
Austin (Austin, TX) in 2013.  The second symposium was
held at the University of British Columbia (Vancouver,
Canada) in 2014. The third symposium was held at Mont-
pellier Business School (Montpellier, France) in 2015.  Then,
Benbya, McKelvey, Nan, Tanriverdi, and Yoo organized a
Professional Development Workshop entitled “Complexity in
Information Systems and Digital Business” at the Academy
of Management Meetings in Vancouver, Canada, in August
2015.  On behalf of those who were involved in these
symposia and workshops, McKelvey, Tanriverdi and Yoo
proposed a special issue on complexity and subsequently
agreed to serve as senior editors for the current special issue. 
In December 2015, Tanriverdi and Yoo organized a Pre-ICIS
Paper Development Workshop for prospective authors who
were interested in submitting their research to the special
issue, where 26 extended abstracts were submitted and
discussed with editorial board members.

The special issue received a total of 50 submissions.  Forty
submissions were sent out to review after the initial screening.
In the next round, 22 submissions were invited for revision
and resubmission.  In the third round, 10 submission were
invited for further revisions and resubmission.  In the fourth
round, seven submissions were invited for a final revision.  In
the final round, five articles were accepted for publication in
the special issue.  To recognize their involvement from the
beginning of the entire process of the special issue develop-
ment, Benbya and Nan joined Tanriverdi and Yoo in writing
this introductory essay for the special issue.

The five articles in this special issue illustrate how IS scholars
build on theoretical lenses and methodological tools of com-
plexity science to study digitally induced complexity in
sociotechnical systems.  They demonstrate the promise for IS
researchers to not only draw on but also extend complexity
science in digital worlds.  In discussing a special issue article,
we first introduce the broad research theme motivated by a
complex phenomenon and then discuss how the special issue
article addressed some aspects of the phenomenon.

Research Theme 1:  Designing IS to Unknown
or Rapidly Changing Requirements 

Although much IS research accounts for the degree of com-
plexity inherent in IS development (ISD), it rests on the
assumption that the ISD process can be rationally planned and
controlled.  Such an assumption, however, is not suitable for
explaining rapid and unexpected changes characterizing the
increasingly interconnected IS collectives found in contem-
porary organizations.  Nor is it sufficient if we are to under-
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stand the generativity and emergent properties with which
digital infrastructures and platforms are inextricably inter-
twined.  This raises an important question for ISD in complex
environments:  How do we design systems to be evolvable so
as to match the transient pace of changing environments and
organizational goals?  A number of IS scholars over the past
few years have increasingly begun to consider the distinctive
insights offered by complexity science to guide the develop-
ment of evolvable and agile systems (e.g., Benbya and
McKelvey 2006a, 2006b;  Montealegre et al. 2014; Tiwana et
al. 2010; Vidgen and Wang 2009).

In their article, “The Dynamics of Drift in Digitized Pro-
cesses,” Brian Pentland, Peng Liu, Waldemar Kremser, and
Thorvald Hærem explore unexpectedly changing require-
ments in digitized business processes supported by digital
technologies.  They observe that incremental endogenous
changes in a digitized business process can suddenly push the
process to a state of self-organized criticality.  Through a
simulation, they show that endogenous changes in the process
can lead to nonlinear bursts of complexity, causing a trans-
formative phase change in the process.  After the burst of
complexity, they further find that the dominant pattern of
digitized business processes looks much different from the
initial condition.  Their finding raises significant questions
about the way we design digital technologies to support
digitized business processes.  Their simulation results show
that systems with adaptive programming are prone to trans-
formative phase changes while systems with deterministic
programming are not.  Although it is infeasible to predict
emergent process requirements, authors argue that digital
technology can be designed and used to influence the likeli-
hood and severity of transformative phase changes caused by
emerging requirements in digitized business processes.

Research Theme 2:  Using Digital Technologies
to Steer a Complex Sociotechnical System
Through Phase Transitions

Digitally induced, evolutionary transformative phase transi-
tions also take place in products, business models, and new
organizational forms.  Some firms embed digital technologies
in physical products to transition from physical products to
digitized products (Tarafdar and Tanriverdi, 2018; Yoo et al.
2010).  Some firms transition from a portfolio of digitized
products to a product platform over which they develop an
offer of a family of derivative digital products (Gawer 2014).
The pervasiveness of digital technologies in products also
leads to the development of new business models around
digital platforms and ecosystems (Yoo et al. 2012).  Some
firms want to transition from competing on products to com-
peting on digital platform ecosystems (Parker et al. 2016).

They seek to transition toward multi-sided digital platform
ecosystems that can solve common problems of very large
numbers of consumers and third-party content developers.
Such transitions also emerge in IT-enabled organizational
forms, such as communities and markets, which can dynam-
ically transform over time.  Benbya et al. (2015), for example,
theorize about how a market can transition into a community,
and vice versa.  Rather than conceptualizing these forms as
alternative, stable structures of knowledge sharing and
innovation, they call for investigating movements and
transitions between them.  These transition endeavors raise an
important question for IS research:  How can firms use digital
technologies to deliberately steer a complex sociotechnical
system from a given state through phase transitions toward a
desired new state?
 
In their article, “Digitization and Phase Transitions in Plat-
form Organizing Logics:  Evidence from the Process Automa-
tion Industry,” Johan Sandberg, Jonny Holmström, and Kalle
Lyytinen address this question by conducting a longitudinal
case study of digitally induced transformative phase transi-
tions in ASEA Brown Boweri (ABB).  Specifically, they
study how ABB started with an analog automation product
platform, infused it with digital technologies deepening its
digital capacities over a 40-year period, and tried to steer it
toward an ecosystem-centered organizing logic.  Sandberg
and his colleagues use the constrained generating procedures
(CGPs) notion of the complex adaptive systems theory to
analyze three mechanisms of phase transitions:  interaction
rules, design control, and stimuli-response variety.  The
findings suggest that firms can leverage digital technologies
in trying to deliberately steer complex sociotechnical systems
through phase transitions toward desired new states.  How-
ever, the outcomes of digitally induced phase transitions are
not easily foreseen as they are often mediated by unintended,
emergent changes in CGPs.

Research Theme 3:  Understanding How Com-
plex Institutional Structures Shape the Evolu-
tion of Enterprise Information Systems

A major desire of organizations is to foresee how their digital
or nondigital interventions would affect the evolution of their
enterprise information systems and performance outcomes. 
However, due to the complexity of their institutional environ-
ments, such outcomes are often emergent and infeasible to
foresee.  Nevertheless, complexity scholars and practitioners
suggest modeling and simulating such complex environments
to gain insights into possible evolution patterns of enterprise
IS and performance outcomes.

MIS Quarterly Vol. 44 No. 1/March 2020 11



Benbya et al./Introduction:  Complexity & IS Research

In “The Evolution of Information Systems Architecture:  An
Agent-Based Simulation Model,” Kazem Haki, Jannis Beese,
Stephan Aier, and Robert Winter build a theory-informed
agent-based simulation model to generate insights about the
evolution of enterprise IS architecture and efficiency and
flexibility outcomes in complex institutional contexts.  Speci-
fically, they model the complex institutional environments of
organizations by modeling three institutional forces (i.e.,
normative, coercive, and mimetic forces), and creating dif-
ferent combinations of the institutional forces.  They also
model how a heterogeneous set of agents (e.g., individuals
and organizational units) would interact with the institutional
forces in trying to complete a dynamically changing set of
tasks in the environment.  The dynamic changes in the task
environment influence how agents would interact with each
other and with the institutional forces and whether they would
adopt standardized IT solutions of the corporation or develop
customized IT solutions locally to address the tasks.  Haki and
his colleagues conduct simulations to understand how the
enterprise IS architecture of the organization would evolve
under different levels and combinations of the institutional
forces and what kinds of efficiency and flexibility outcomes
could be expected.  This study illustrates how IS researchers
use the theoretical and methodological tools of complexity
science to help managers anticipate how complex institutional
environments of their organizations could shape the evolution
of their enterprise IS architectures and organizations’ perfor-
mance outcomes.

Research Theme 4:  Taming Complexity
with Algorithms

Complexity science argues that problems emerging out of the
complexity of sociotechnical systems are “wicked” problems
that cannot be “solved” but that they could be “tamed”
(Tanriverdi, Rai, and Venkatraman 2010).  A wicked problem
has a large number of diverse stakeholders who have different
objectives, values, and priorities.  Those stakeholders are
connected and mutually dependent.  A wicked problem
emerging out of digitally induced complexity in digital
platform ecosystems is a search problem.  The search
behavior of one stakeholder affects search outcomes of the
other stakeholders.  The roots of the wicked search problem
are tangled.  The wicked problem morphs into another form
with every attempt to address it.  The challenge has no prece-
dent.  There is nothing to indicate that there is a right answer
to the wicked search problem.  While it is infeasible to solve
such wicked problems, IS researchers turn to big data,
machine learning, and AI algorithms to “tame” them.

Onkar Malgonde, He Zhang, Balaji Padmanabhan, and Moez
Limayem, in their article “Taming Complexity in Search
Matching:  Two-Sided Recommender Systems on Digital

Platforms,” develop a complexity theoretic recommender
algorithm to address the wicked search matching problem
arising out of digitally induced complexity in Internet-based
educational platforms.  They view an Internet-based educa-
tional platform as a complex adaptive business system
(CABS) where multiple sides of the platform have different
and evolving objectives, preferences, and constraints.  They
argue that search matching is a wicked problem in such
CABS and that it cannot be tamed by traditional one-sided
recommender algorithms.  They build on complex adaptive
systems theory to develop a two-sided recommender algo-
rithm for taming the complexity of the search matching
problem by allowing agents to co-evolve and learn in the sys-
tem.  Using an agent-based simulation model, they show that
the proposed recommendation algorithms tame the wicked
search matching problem although it cannot fully solve it.

Research Theme 5:  IT-Enabled Competitive
Advantage in Complex Competitive
Environments

IT and competitive advantage remains a key topic of interest
to the IS discipline.  As the complexity of competitive envi-
ronment increased, however, firms started to find it in-
creasingly challenging to achieve their quest for competitive
advantage.  Rivals and new start-ups use digital technologies
in innovative new ways to make frequent and bold competi-
tive moves to erode the advantages of the incumbents.  As
incumbents attempt to renew their advantages, the perfor-
mance rank orderings of firms in the industry keep fluctuating
rapidly, a phenomenon known as hypercompetition (Nan and
Tanriverdi 2017).  As such, the traditional quest of sustained
competitive advantage ought to shift to a quest to create and
renew temporary competitive advantages in complex, hyper-
competitive environments (Tanriverdi, Rai, and Venkatraman
2010).  Some scholars argue that firms can cope with such
environments by developing IT-enabled dynamic and impro-
visational capabilities and IT-enabled agility (El Sawy and
Pavlou 2008; Pavlou and El Sawy 2010).  Other scholars
argue that adaptation to a rapidly changing environment may
not be sufficient for firm survival and performance.  Coevolu-
tionary views of IS strategy have been proposed to better
account for the mutual influences of a firm’s IT-based stra-
tegic actions in complex, dynamically changing environments
(Benbya and McKelvey 2006a, 2006b).

Concomittant with these trends, economists warn that some
firms, especially the leaders of digital platform ecosystems,
enjoy rising monopoly power and persistently high monopoly
profits.  There have also been reports of declining dynamism
and competition in the U.S. economy (Shambaugh et al.
2018).  Since the era of personal computers in the 1980s,
there has been a marked increase in concentration rates and a
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decrease in competition in the United States (Eggertsson et al.
2018).  After the take-off of the Internet in the mid-1990s,
concentration rates have been rising faster in high IT-
intensive industries than in low IT-intensive industries
(McAfee and Brynjolfsson 2008).  The highest concentration
rates are seen in industries characterized by digital tech-
nologies that have large returns to scale and network effects
(Shambaugh et al. 2018).  The gap between winners and
losers has also widened dramatically.  These seemingly con-
flicting trends raise important questions for IS strategy
research:  Does digitalization amplify hypercompetition and
erode the IT-enabled sources of sustained competitive
advantages?  Alternatively, does digitalization attenuate
hyper-competition by concentrating the ownership and control
of digitalized resources and market power in a few digital
giants, thereby reducing rivalry?  If both scenarios are
feasible, how can firms strategize to create competitive
advantages with IT?

YoungKi Park and Sunil Mithas, in their article “Organized
Complexity of Digital Business Strategy:  A Configurational
Perspective,” examine how firms configure their six key
digital and nondigital capabilities to achieve high performance
in complex digital environments.  They use a configurational
perspective and a fuzzy-set qualitative comparative analysis
(fsQCA) method to study how different configurations of the
complex, nonlinear relationships among the six digital and
nondigital capabilities affect firm performance in different
economic sectors with varying digitization and environmental
turbulence levels.  A key finding is that digital capability
alone is neither necessary nor sufficient for high performance
in any configuration.  However, digital capability is an
important element of the overall capability configuration. 
Depending on the economic sector, digital capability plays
different roles in the overall capability configuration; for
example, no role at all, a counterproductive role, or a high
contributor to performance.

Conclusions

Digitally induced complexity is pervasive in sociotechnical
systems.  Complexity presents fundamental challenges to IS
research such as the difficulty in circumscribing the bound-
aries of a complex system, the multilevel nature of the
complex phenomena, the difficulty of causal inference, the
limited durability of new knowledge claims, and the limits to
predictability.  Nevertheless, complexity science offers theo-
retical and methodological tools to address these challenges
and turn them into opportunities.  The five articles in this
special issue illustrate how IS researchers use the theoretical
and methodological tools of complexity science to study
wicked problems arising out of digitally induced complexity
in the digital world.  Each of these special issue articles

recognizes that the new complex phenomenon it focuses on
would not have been feasible to study with conventional
theories and methods.  By building on theories and methods
from complexity science, these studies were able to study the
complex new phenomena and generate new insights and
explanations.  However, these articles are not mere appli-
cations of known complexity concepts in the IS context. 
They also leverage the uniqueness of the IS context to
generate new insights to contribute back to complexity
science.  Specifically, these IS studies inform complexity
science how the digitally enabled hyper-connections, hyper-
speed, and hyper-turbulence in sociotechnical systems create
previously unprecedented levels of complexity and dynamism
and pose fundamental challenges to individuals, organiza-
tions, and society.  In the natural and biological worlds
studied by complexity science, major evolutionary and trans-
formative changes take millions of years to unfold.  In
comparison, major evolutionary and transformative changes
trigged by digitally induced complexity take place in a matter
of years, if not months, days, and even hours in modern day
sociotechnical systems.  The articles in the special issue lever-
aged the unique properties of digital technologies, digitized
processes, products, platforms, ecosystems, and business
models to study how and why these transformations take
place.  They also combined their theories and methods with
those of complexity science to generate new explanations as
to how wicked problems created by digitally induced com-
plexity could be tamed.  The approaches developed by these
IS studies could potentially inform complexity studies in other
disciples.
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