
RESEARCH ESSAY

DISCOVERING UNOBSERVED HETEROGENEITY IN
STRUCTURAL EQUATION MODELS TO

AVERT VALIDITY THREATS

Jan-Michael Becker
Department of Marketing and Brand Management, University of Cologne,

Cologne, 50923, GERMANY  {j.becker@wiso.uni-koeln.de}

Arun Rai
Center for Process Innovation and Department of Computer Information Systems, Robinson College of Business,

Georgia State University, Atlanta, GA 30303  U.S.A.  {arunrai@gsu.edu}

Christian M. Ringle
Institute for Human Resource Management and Organizations, Hamburg University of Technology (TUHH),

Hamburg, 21073, GERMANY  {ringle@tuhh.de}  and

Faculty of Business and Law, University of Newcastle, Callaghan, NSW 2308  AUSTRALIA  {christian.ringle@newcastle.edu.au}

Franziska Völckner
Department of Marketing and Brand Management, University of Cologne,

Cologne, 50923, GERMANY  {voelckner@wiso.uni-koeln.de}

Appendix A

Meta-Analyses of Information Systems Studies

Table A1.  Meta-Analyses of IS Studies:  Inconsistent Results Across a Range of Phenomena

IS Phenomenon
Reference, 

Journal Scope Meta-Analysis Purpose
Moderators/Contingency

Variables Examined
Nature of Inconsistent Findings

(emphasis added)

Decision Support
System (DSS)
Implementation
Success

Alavi and
Joachimsth
aler 1992,
MISQ

144
findings
from 33
studies

Investigating the relationship
between user-related factors and
DSS implementation success

Authors suggest that
moderators could explain the
large variance in effect sizes
across studies.

“Reviews of information systems
implementation research…have
revealed that collectively, implemen-
tation studies have yielded
conflicting and somewhat
confusing findings.”

Group Support
Systems (GSS)

Dennis et al.
2001, MISQ

61 articles
Developing a new model for
interpreting GSS effects on firm
performance.

• Fit between the Task and
the GSS Structures

• Appropriation Support
Received

“Many previous papers have
lamented the fact that the findings of
past GSS research have been
inconsistent.  This paper develops
a new model for interpreting GSS
effects on performance…”
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Table A1.  Meta-Analyses of IS Studies:  Inconsistent Results Across a Range of Phenomena
(Continued)

IS Phenomenon
Reference, 

Journal Scope Meta-Analysis Purpose
Moderators/Contingency

Variables Examined
Nature of Inconsistent Findings

(emphasis added)

IT Investment
Payoff

Kohli and
Deveraj
2003, ISR

66 studies

Examining structural variables that
explain why some IT payoff studies
observe a positive effect and some
do not.

• Dependent Classification
• Sample Size
• Data Source
• Type of IT Impact 
• Type of IT Assets 
• Industry

“…some studies have shown mixed
results in establishing a relationship
between IT investment and firm
performance.”

IT Innovation
Adoption

Lee and Xia
2006, I&M

54 correla-
tions from
21 studies

Investigating the effects of
organizational size on IT innovation
adoption.

• Type of Innovation
• Type of Organization
• Stage of Adoption
• Scope of Size
• Industry Sector

“…empirical results on the
relationship between them have
been disturbingly mixed and
inconsistent.…explain and resolve
these mixed results by… examining
the effects of six moderators on the
relationship.”

IT Project
Escalation

Wang and
Keil 2007,
IRMJ

12 articles
with 
20 separate
experiment
s

Investigating the effect size of sunk
cost on project escalation and deter-
mining whether there is a difference
in effect sizes between IT and non-
IT projects.

• IT vs. Non-IT Projects

“…because of the strong magnitude
and heterogeneity of effect sizes
for the sunk cost effect, we need
more primary studies that
investigate potential moderators of
sunk cost.”

Turnover of IT
Professionals

Joseph et
al. 2007,
MISQ

33 studies

Integrating the 43 antecedents of
turnover intentions of IT
professionals in a unified framework
using meta-analytic structural
equation modeling.

• Age 
• Gender Ratio of Sample
• Operationalization of

Turnover Intention
• Operationalization of

Antecedents

“…our narrative review finds several
inconsistent (e.g., organization
tenure and role conflict) and
inconclusive (e.g., age and gender)
findings.”

IS
Implementation
Success

Sharma and
Yetton
2003, MISQ

22 studies

Proposing a contingent model in
which task interdependence
moderates the effect of
management support on
implementation success.

• Task Interdependence

“A meta-analysis of the empirical
literature provides strong support for
the model and begins to explain the
wide variance in empirical
findings.”

“The theory developed and findings
reported above help to explain the
inconsistent findings in the
literature.”

Sabherwal
et al. 2006, 
Mgmt.Scien
ce

612
findings
from 121
studies

Explaining the interrelationships
among four constructs representing
the success of a specific information
system and the relationships of
these IS success constructs with
four user-related constructs and two
constructs representing the context.

Authors suggest that possible
moderators include voluntari-
ness of IS adoption and user
characteristics such as age
and gender.

“Despite considerable empirical
research, results on the
relationships among constructs
related to information system (IS)
success, as well as the determinants
of IS success, are often
inconsistent.”

Sharma and
Yetton
2007, MISQ

27 studies

Proposing a contingent model in
which the effect of training on IS
implementation success is a
function of technical complexity and
task interdependence.

• Technical Complexity
• Task Interdependence

“Research has investigated the main
effect of training on information
systems implementation success. 
However, empirical support for
this model is inconsistent.”
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Table A1.  Meta-Analyses of IS Studies:  Inconsistent Results Across a Range of Phenomena
(Continued)

IS Phenomenon
Reference, 

Journal Scope Meta-Analysis Purpose
Moderators/Contingency

Variables Examined
Nature of Inconsistent Findings

(emphasis added)

Technology
Acceptance

King and He
2006, I&M

88 studies
Summarizing TAM research and
investigating conditions under which
TAM may have different effects.

• Type of Users
• Type of Usage

“...all TAM relationships are not
borne out in all studies; there is
wide variation in the predicted
effects in various studies…”

“Since there are inconsistencies in
TAM results, a meta-analysis is
more likely to appropriately integrate
the positive and the negative.”

Schepers
and Wetzels
2007, I&M

51 articles
containing 
63 studies

Analyzing the role of subjective
norms and three inter-study
moderating factors.

• Type of Respondents
• Type of Technology
• Culture

“First, the subjective norm has had a
mixed and inconclusive
role….Some studies found
considerable impacts of it on the
dependent variables.  However,
others did not find significant
effects.”

Wu and
Lederer
2009, 
MISQ

71 studies

Investigating the impact of
environment-based voluntariness on
the relationships among the four
primary TAM constructs (i.e., ease
of use, perceived usefulness,
behavioral intention, and usage).

• Environment-Based
Voluntariness

“The Q statistic for each of the five
correlations exceeded its cutoff, and
thus the analyses confirmed
heterogeneity for each (p < 0.01). 
That is, of all the correlations vary
across studies more than would
be produced by sampling error.”

Appendix B

Prediction-Oriented Segmentation for PLS Path Modeling (PLS-POS)

Overview

As a distance-based segmentation method, the PLS prediction-oriented segmentation (PLS-POS) method builds on earlier work on distance-
measure-based segmentation—that is, the PLS typological path modeling (PLS-TPM) approach (Squillacciotti 2005) and its enhancement, the
response-based detection of respondent segments in PLS (REBUS-PLS) (Esposito Vinzi et al. 2008).  To extend the distance-measure-based
PLS segmentation methods (including overcoming the methodological limitation of PLS-TPM and REBUS-PLS being applicable only to PLS
path models with reflective measures (Esposito Vinzi et al. 2008; Sarstedt 2008)), the PLS-POS algorithm introduces three novel features:  (1) it
uses an explicit PLS-specific objective criterion to form homogeneous groups, (2) it includes a new distance measure that is appropriate for
PLS path model with both reflective and formative measures and is able to uncover unobserved heterogeneity in formative measures, and (3) it
ensures continuous improvement of the objective criterion throughout the iterations of the algorithm (hill-climbing approach).   Table B1 shows
the key technical differences of the new PLS-POS method in comparison with the main distance-based methods (i.e., PLS-TPM and REBUS-
PLS) and the popular finite-mixture method for PLS (i.e., FIMIX-PLS).

The following sections explain in greater detail PLS-POS’ distinctive features.  To begin with, we focus on the description of PLS-POS’
objective criterion.  An explanation of the distance measure employed and its extension to use it for formative measurement models follows.
Finally, we provide details on the algorithm with its specific steps and procedures and how it ensures the continuous improvement of the
objective criterion.

Objective Criterion of PLS-POS

The main segmentation objective in PLS is to form homogenous groups of observations that show increased endogenous variables’ explained
variance (R²) and, thus, provide an improved prediction (compared to the overall sample), which is in accordance with Anderberg’s (1973, p.
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Table B1.  Comparison of the Technical Differences of FIMIX-PLS, PLS-TPM, REBUS-PLS, and PLS-POS

Finite-Mixture  
Segmentation

Approach Distance-Based Clustering Approaches

Algorithm Feature
FIMIX-PLS
(Hahn et al. 2002)

PLS-TPM
(Squillacciotti 2005;
Squillacciotti 2010)

REBUS-PLS
(Esposito Vinzi et al. 2010;
Esposito Vinzi et al. 2008)

PLS-POS

Distributional
Assumptions

Yes No No No

Pre-clustering
No pre-clustering;
random split of
observations

Hierarchical
classification based
on redundancy
residuals of the
overall model

Hierarchical classification
based on communality and
structural residuals of the
overall model

No pre-clustering; random
split of observations and
assignment to closest
segment according to the
distance measure

Distance measure
Has no distance
measure†

Based on redundancy
residuals of a single
reflective endogenous
latent variable

Based on communality
residuals of all latent vari-
ables and structural
residuals of all endog-
enous latent variables

Based on structural resi-
duals of all endogenous
latent variables with an
extension that also accounts
for heterogeneity in
formative measures

Accounts for sources of
heterogeneity in reflec-
tive measures?

No No Yes No

Accounts for sources of
heterogeneity in forma-
tive measures?

No No‡ No ‡ Yes

Accounts for sources of
heterogeneity in the
structural model?

Yes Yes Yes Yes

Assignment of
observations to
segments in each
iteration

Proportional assignment
of all  observations to all
segments based on the
conditional multivariate
normal densities to
optimize the likelihood
function

Assigns all
observations to the
closest segment

Assigns all observations to
the closest segment

Assigns only one
observation to the closest
segment and assures
improvement of an objective
criterion (R² of all
endogenous latent
variables) before accepting
the change

Stop criterion

Extremely small
improvement in log
likelihood below critical
value (or maximum
number of iterations)

Stability of the
classes’ composition
(no reassignment of 
observations); or
maximum number of
iterations

Stability of the classes’
composition (number of re-
assignments below a
critical percentage value of
observations); or maximum
number of iterations

Infinitesimal improvement in
objective criterion (or
maximum number of
iterations)

†FIMIX-PLS assumes that each endogenous latent variable is distributed as a finite mixture of conditional multivariate normal densities.  It uses
these densities to estimate probabilities of segment memberships for each observation (proportional assignment) to optimize the likelihood function
(which implicitly maximizes the segment-specific explained variance as part of the likelihood function).
‡“As in PLS-TPM, … [REBUS-PLS] ‘distance’ has, so far, only been implemented on models with reflective blocks.  Although this is not to be
considered a strict limitation for many applications, it must be pointed out that REBUS-PLS requires all blocks to be reflective” (Esposito Vinzi et
al. 2008, p. 444).  This requirement for models with only reflective measures also holds for the REBUS-PLS implementation in the PLSPM package
(Sánchez and Trinchera 2013) for the statistical software R (R Core Team 2013).
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195) notion of “clustering for maximum prediction.”  Consequently, possible PLS-specific and, thus, prediction-oriented objective criteria
include the following:  (1) the sum of the manifest variables’ redundancy residuals in the reflective measures, (2) the sum of endogenous latent
variables’ R² values in the structural model, and (3) the goodness-of-fit criterion (GoF; Tenenhaus et al. 2005)1 for assessing both the structural
model and the reflective measures.

Including the residual terms of the manifest variables would only be appropriate to assess the explained variance and, thus, the predictive
performance in reflective measures.  Because PLS path modeling allows for the use of reflective and formative measures, objective criteria
that draw on the manifest variables’ residual terms do not support the general applicability of PLS-POS in both measurement models (i.e.,
reflective and formative).  Consequently, the redundancy and community residual in the reflective measures, which are also included in the
PLS-GoF measure, are not a useful criterion for the purpose of the PLS segmentation method.

An appropriate PLS-specific objective criterion maximizes the sum of the endogenous latent variables’ R² values.  In accordance with the PLS
algorithm’s objective (Lohmöller 1989; Wold 1982), PLS-POS focuses on maximizing the predictivity of each group by minimizing the sum
of the endogenous latent variables’ squared residuals in the PLS path model.  Thus, the sum of each group’s sum of R² values represents the
objective criterion, which is explicitly defined and calculated in the PLS-POS algorithm.  Every reassignment of observations in PLS-POS
ensures improvement of the objective criterion (hill climbing approach; see description of the algorithm below).  This objective criterion is
suitable for any PLS path model regardless of whether such models include reflective or formative measures.

Distance Measure

To reassign observations, PLS-POS builds on the idea of Squillacciotti (2005) and Esposito Vinzi et al. (2008) to use a distance measure.  We
propose a new distance measure that is applicable to both reflective and formative measures and accounts for heterogeneity in the structural 
and the formative measurement model.  This observation-to-group distance measure identifies appropriate observations to form homogenous
groups and thereby depicts suitable candidates to improve the objective criterion.  Within a group, each observation’s capability to predict the
endogenous latent variables in the PLS path model determines its distance to that group:  the shorter the distance of observation i to group g,
the higher the predictivity of observation i in group g.

It is important to understand the conceptual difference between observation i’s membership in its current group k (k = g; k, g ε G) and its dis-
tance to an alternative group g (k … g; k, g ε G).  For every endogenous latent variable b (b ε B), the latent variable scores of its direct prede-

cessors  and the corresponding structural model path coefficients  allow for the group-specific prediction of the endogenous latentYa ik
exogenous
b

pa gb

variable scores  via linear combinations .  To calculate  , we use the latent variable scores of( )Ybig ( )Y Y pbig a ik
exogenous

a ga

A

b bb

b= ×
= 1

Ybig

an observation’s current group k and draw on the alternative group g’s PLS path coefficients .  The difference between the predicted value pa gb

Ybig

and the current group’s latent variable scores  from the PLS path model estimation is the residual of observation i in group g for theYbik
endogenous latent variable b (Equation 1):

(1)( )e Y Y Y p Ybig big bik a ok
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The result of  is an observation’s predictivity in its current group when k = g (k, g ε G).  Furthermore, using the path coefficients ebig
2 pa gb

of  alternative group-specific PLS estimations for k … g (k, g ε G) provides a heuristic outcome for observation i’s predictivity in each of the
G-1 other possible group assignments.  This establishes the new prediction-oriented PLS-POS distance measure, as presented by Equation (2):

(2)D
e

e
kig

big

bigi

I
b

B

k
=

=
= 


2

2

1
1

The residuals of each observation i are divided by the sum of the residuals of all observations in i’s current group k (Ik; sample size in group
k).  This ratio’s square root is the distance of an observation i to group g for an endogenous latent variable b (b ε B).  The sum over all

1Against its naming, PLS-GoF does not represent a measure of fit for PLS path modeling; see Henseler and Sarstedt (2012) for a discussion.
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endogenous variables B in the PLS path model provides the total distance measure Dkig.  The smaller the sum of the endogenous latent variables’
squared residual values, the higher the predictivity of observation i in group g of the underlying PLS path model.

The distinction between formative and reflective measures requires that one pays particular attention in PLS path modeling (e.g.,
Diamantopoulos et al. 2001; Gudergan et al. 2008; Jarvis et al. 2003).  Formative measures require (1) taking into account the indicators’
heterogeneity for each measurement model within each group and/or (2) uncovering the significant differences in weights between the groups.
Therefore, calculating the group-specific residual term in models with formative measures requires an extension of the group-specific residual 

in the distance measure.  The latent variable scores  are replaced by linear combinations of the manifest variable scores  andebig
2 Ya jikb

xa jikb

the corresponding measurement model’s formative weights .  Equation (3) shows the calculation of the residual term for formativeπa jgb

measures in the PLS path model.

(3)e x p Ybig a jik a jg a g bik
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j

J
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b b b

b

b
2
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2
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π

The formative latent variable scores become a group-wise reestimated prediction of the associated manifest variables j when the squared residual
is determined.

Algorithm

The segmentation process starts by randomly partitioning the overall sample into the prespecified number of G equal groups (Figure B1, Step
1).  Calculating all group-specific PLS path model estimates reveals each observation’s distance to its own and all other G-1 groups.  A
partitioning approach that assigns each observation to the group to which it has the shortest distance improves the initial segmentation.

Subsequently, the PLS-POS algorithm computes the group-specific PLS path modeling results (Figure B1, Step 2), updates the objective
function (Figure B1, Step 3), and computes the observations’ distances to all groups (Figure B1, Step 4.1).  PLS-POS uses the distance measure
to reassign observations based on the maximum value of the difference between an observation’s distance to its current group (i.e., the group
to which the observation has been assigned) and its distance to an alternative group (Equation 4).

difference Δkig = distance to current group k (Dkik) – distance to alternative group g (Dkig) (4)

Positive differences indicate that an observation has a shorter distance to the alternative group and, thus, potentially fits better in that group
in terms of predictivity.  This computation is conducted for all observations (Figure B1, Step 4.1).  Each observation’s maximum positive
difference becomes part of the list of candidates (Figure B1, Step 4.2).  Negative values are not considered because reassigning these
observations possibly decreases the objective criterion.  Subsequently, the candidates are sorted in descending order in terms of their positive
distance differences (Figure B1, Step 4.3).

After the STOP statement, PLS-POS provides the group-specific PLS path model estimates for the final segmentation solution (Figure B1,
Step 7).  The maximum number of iterations should be sufficiently high (e.g., twice the number of observations in the overall sample) to obtain
a solution that is close to the global optimum.  The maximum search depth equals the number of observations in the sorted list of candidate
observations for reassignment and, thus, may not exceed the number of observations in the overall sample.  In early explorative research stages,
one may use a reduced search depth for performance reasons.  However, to determine the final segmentation result, the search depth should
equal the maximum number of observations to ensure that the segmentation solution that minimizes the PLS-POS objective criterion (i.e., the
endogenous latent variables’ R² values in the PLS path model) has been identified.

Finally, three important issues are worth noting.  First, PLS-POS only reassigns observations that improve the objective criterion.  As such,
the algorithm ensures the continuous improvement of the objective criterion and potentially provides a solution that is at least close to the global
optimum.  Second, in each iteration step, the algorithm changes the assignment of only one observation and calculates the group-specific PLS
estimates of all observations and their new distance measures.  Thus, in contrast to the alternative distance-based PLS segmentation approaches
suggested in the literature to date (e.g., Esposito Vinzi et al. 2008; Squillacciotti 2005), PLS-POS avoids moving a sizeable set (more or less)
of similar candidates from one group to another without improving the objective criterion.  Third, owing to the implementation of a hill-
climbing approach, PLS-POS could face the problem of ending in local optima.  Wedel and Kamakura (2000) recommend running hill-climbing
algorithms several times to attain alternative starting partitions and, finally, to select the best segmentation solution.  The same procedure should
be applied in the application of PLS-POS.
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Step 1: Create an initial segmentation to start the algorithm 
Step 1.1: Randomly split the overall sample into K equally sized groups
Step 1.2: Compute the group-specific PLS estimates for the path model
Step 1.3: Establish each observation’s distance to each group 
Step 1.4: Assign each observation to the closest group

DO LOOP
Step 2: Compute the group-specific PLS estimates for the path model
Step 3: Determine the result of the objective criterion
Step 4: Create a list of candidate observations for reassignment

Step 4.1: Establish the K-1 differences between each observation’s distance to its current group and an alternative
group 

Step 4.2: IF an observation has one or more positive differences of distances, then
Add the maximum difference and the observation’s corresponding alternative group assignment to a list of
candidates

ELSE: Do nothing
Step 4.3: IF the list is empty, then

GO TO STOP
ELSE: Sort the list of candidate observations in descending order in terms of their positive distance differences 

Step 5: Improve the segmentation result
Step 5.1: Select the first observation in the list of candidate observations for reassignment
DO LOOP
Step 5.2: Reassign the observation
Step 5.2: Compute the group-specific PLS estimates for the path model
Step 5.3: Determine the result of the objective criterion
Step 5.4: IF the observation’s reassignment improves the objective criterion, then

Save the current assignment and GO TO Step 6
ELSE: Undo changes and continue with Step 5.5

Step 5.5: IF the list contains a subsequent observation following the currently selected observation on the list of
candidates AND the maximum search depth has not been reached, then

Select the next observation
ELSE: GO TO Step 6

UNTIL the objective criterion is improved
Step 6: IF the maximum number of iterations OR the maximum search depth has been reached, then

GO TO STOP
ELSE: GO TO Step 2

UNTIL STOP
Step 7: Compute the group-specific PLS path model estimates and provide the final segmentation results

Figure B1.  The PLS-POS Algorithm

Appendix C

Design of the Multicollinearity Factor for the Simulation Study

The design of the simulation study for the formative measurement model includes three levels of multicollinearity between the formative
indicators in the model.  To simulate different levels of multicollinearity, we revert to Mason and Perreault’s (1991) seminal study on
multicollinearity (see also Grewal et al. 2004).  We vary two levels of correlation patterns among the predictor variables reflecting conditions
typically encountered by researchers and practitioners.  In addition, a situation in which the indicators are uncorrelated (orthogonal) serves as
a baseline for comparison (i.e., a perfect formative measure) because this model is unaffected by multicollinearity.
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Table C1 shows the two multicollinearity levels based on Mason and Perreault, including the trace of (X’X)-1, det(X’X), and condition number,
as well as each variable’s variance inflation factor (VIF) associated with a given level of multicollinearity.

Table C1.  Levels of Multicollinearity

Level 1 Level 2

X1 X2 X3 X4 X1 X2 X3 X4

X1 1.00 1.00

X2 .65 1.00 .80 1.00

X3 .40 .40 1.00 .60 .60 1.00

X4 .00 .00 .00 1.00 .00 .00 .00 1.00

VIF 1.80 1.80 1.24 1.00 2.96 2.96 1.67 1.00

Trace (X’X)-1 5.85 8.59

Det(X’X) .47 .22

Condition no. 2.38 3.42

Note:  VIF = variance inflation factor

Appendix D

Simulation on the Effects of Unobserved Heterogeneity

The objective of this simulation study is to evaluate the implications of unobserved heterogeneity for structural model parameter estimates in
PLS path models.  The results show that unobserved heterogeneity has a strong adverse effect on PLS estimation outcomes:  (1) parameter
estimates are biased, (2) nonsignificant path coefficients at the group level become significant at the overall sample level that combines groups,
(3) sign differences in the parameter estimates between groups are manifested as nonsignificant results at the overall sample level, and
(4) explained variance of the model (R² of the endogenous variables) decreases.  These erroneous estimates can lead to both Type I and Type II
errors and to invalid inferences.

The simulation study uses a path model with two exogenous variables having a direct effect on one endogenous variable (all variables measured
with five reflective indicators).  We generate data for the true path coefficients of two groups by considering three situations of unobserved
heterogeneity:

• Situation 1, where the path coefficients between group 1 and group 2 differ but show the same sign.  We consider scenarios where all
parameter estimates are positive (situation 1a) and negative (situation 1b) and where the magnitude in parameter differences between groups
is low (.1) and high (.5).

• Situation 2, where unobserved heterogeneity causes sign reversal in parameter estimates across the two groups (i.e., group 1 has a positive
path coefficient, while group 2 has a negative one).

• Situation 3, where one group has a nonsignificant parameter estimate and the other group has a significant parameter estimate.  We distinguish
between two different levels of parameter differences represented by the effect size of the significant parameter, namely .2 and .7.

We generated 100 sets of data for each condition and estimated the group-specific path coefficients, the overall sample path coefficients, and
the t-values of these coefficients by employing the bootstrapping procedure on 1,000 subsamples (Henseler et al. 2009).

Table D1 presents the results.  The left side shows the group-specific mean estimates of the path coefficients and their average t-values.2  The
columns on the right side show the mean path coefficients of the overall sample and the interpretation of the results in terms of bias, Type I
and II errors, and variance explained (R²).

2For a significance level of α = 0.05 the t-value has to exceed the threshold of 1.98 in these conditions.
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The results show that in all situations, biases in the parameter estimates distort effect sizes and cause misinterpretation of the path coefficients,
which is especially problematic for comparative hypotheses (e.g., path coefficient 1 > path coefficient 2).  Type I and Type II errors are
exacerbated in situations where the group-specific parameters show inconsistent signs (i.e., situation 2 where signs are reversed across groups)
and when at least one of the groups involves nonsignificant parameters while the other group does not (i.e., situation 3).  In contrast, when all
parameters are significant and show the same sign (situation 1), our results suggest that it is not very likely that Type II errors occur.  In this
situation, the existence of Type II errors depends on the effect size and the degree to which the increased power of the combined sample size
compensates for the increase in standard errors due to unobserved heterogeneity.  For all parameter constellations in our simulation study, the
increased sample size compensates for the increase in standard errors.

The R² decreases in almost all situations, implying an inferior model fit at the overall sample level.  We find particularly strong decreases in
R² in situations in which the group-specific effect sizes are high; in contrast, R² is almost unaffected in situations showing low group-specific
effect sizes.

Table D1.  Results of the Simulation Study

Group-Specific
Parameter Estimates Pooled Parameter Estimate

Group 1
(n = 200)

Group 2
(n = 200)

Parameter
(n = 400) Biased?

Type I
Error

Type II
Error Lower R²

1a.

.7 (t = 18.57)
.2 (t = 3.94)

R² = .53

.2 (t = 3.84)
.7 (t = 19.64)

R² = .53

.45 (t = 11.36)

.45 (t = 11.54)
R² = .41

Yes – No Yes

.3 (t = 4.95)

.2 (t = 3.31)
R² = .13

.2 (t = 3.36)

.3 (t = 4.79)
R² = .13

.25 (t = 5.70)

.25 (t = 5.73)
R² = .12

Yes – No (Yes)

1b.

-.7 (t = 18.95)
-.2 (t = 3.70)

R² = .53

-.2 (t = 4.01)
-.7 (t = 19.27)

R² = .53

-.45 (t = -11.19)
-.45 (t = -11.44)

R² = .24
Yes – No Yes

-.3 (t = 5.03)
-.2 (t = 3.14)

R² = .13

-.2 (t = 3.25)
-.3 (t = 5.09)

R² = .13

-.25 (t = -5.61)
-.25 (t = -5.80)

R² = .12
Yes – No (Yes)

2.
.7 (t = 19.43)
.2 (t = 3.99)

R² = .53

-.7 (t = 19.09)
-.2 (t = 3.78)

R² = .53

.00 (t = .01)

.00 (t = .00)
R² = .00

Yes –
100%
100%

Yes

3.

.7 (t = 19.94)
.0 (t = .01)
R² = .49

.0 (t = .01)
.7 (t = 19.89)

R² = .49

.35 (t = 7.61)

.35 (t = 7.38)
R² = .24

Yes
100%
100% 

No Yes

.2 (t = 3.38)
.0 (t = .00)
R² = .04

.0 (t = .01)
.2 (t = 3.17)

R² = .04

.10 (t = 1.88)

.10 (t = 1.90)
R² = .02

Yes
20%
40%

80%
60%

(Yes)

4.
.0 (t = .00)
.0 (t = .01)
R² = .00

.0 (t = .01)

.0 (t = .00)
R² = .00

.00 (t = .00)

.00 (t = .00)
R² = .00

– No – –
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Appendix E

ANOVA Results—Model 1 (Reflective Measures)

Tables E1 to E4 present the ANOVA results for model 1 (reflective measures) explaining MAB by method (PLS-POS/FIMIX-PLS) and the
six design factors.  All significant and substantial effects (i.e., all effects that explain more than 2 percent of the total variance in MAB implying
a partial η² of more than .02) are highlighted in grey.

We find that the R², structural model heterogeneity, data distribution, and the interaction of structural model heterogeneity and R² have a
substantial and significant effect on the MAB of both methods.  Furthermore, there is a significant and substantial difference in the parameter
recovery (MAB) of the two methods (PLS-POS and FIMIX-PLS) and for the interaction effects between the method and structural model
heterogeneity and between the method and R².

Table E1.  Between-Subjects Effects (Part I)

Source of Variance in MAB df F Sig. Partial η²
Intercept 1 14,658.62 .000 .568

SMH 3 1,121.71 .000 .232

R² 3 1,948.85 .000 .344

Sample Size 2 70.77 .000 .013

Reliability 1 1.88 .170 .000

Data Distribution 1 497.52 .000 .043

RSS 1 22.62 .000 .002

SMH × R² 9 178.96 .000 .126

SMH × Sample Size 6 9.64 .000 .005

SMH × Reliability 3 1.33 .262 .000

SMH × Data Distribution 3 21.15 .000 .006

SMH × RSS 3 25.17 .000 .007

R² × Sample Size 6 11.44 .000 .006

R² × Reliability 3 .75 .524 .000

R² × Data Distribution 3 14.72 .000 .004

R² × RSS 3 29.76 .000 .008

Sample Size × Reliability 2 .48 .620 .000

Sample Size × Data Distribution 2 14.17 .000 .003

Sample Size × RSS 2 63.92 .000 .011

Reliability × Data Distribution 1 4.04 .044 .000

Reliability × RSS 1 .11 .735 .000

Data Distribution × RSS 1 267.72 .000 .023

SMH × R² × Sample Size 18 1.75 .026 .003

SMH × R² × Reliability 9 1.27 .249 .001

SMH × R² × Data Distribution 9 6.00 .000 .005

SMH × R² × RSS 9 2.32 .013 .002

SMH × Sample Size × Reliability 6 1.39 .216 .001

Note:  df = degrees of freedom; MAB = mean absolute bias; RSS = relative segment size; SMH = structural model heterogeneity;
all significant and substantial effects (i.e., all effects that explain more than 2% of the total variance in MAB implying a partial η²
of more than .02) are highlighted in grey.
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Table E2.  Between-Subjects Effects (Part II)

Source of Variance in MAB df F Sig. Partial η²
SMH × Sample Size × Data Distribution 6 5.22 .000 .003

SMH × Sample Size × RSS 6 9.23 .000 .005

SMH × Reliability × Data Distribution 3 2.19 .087 .001

SMH × Reliability × RSS 3 3.50 .015 .001

SMH × Data Distribution × RSS 3 2.30 .075 .001

R² × Sample Size × Reliability 6 1.88 .080 .001

R² × Sample Size × Data Distribution 6 1.83 .089 .001

R² × Sample Size × RSS 6 13.00 .000 .007

R² × Reliability × Data Distribution 3 1.85 .135 .000

R² × Reliability × RSS 3 .42 .740 .000

R² × Data Distribution × RSS 3 7.83 .000 .002

Sample Size × Reliability × Data Distribution 2 1.65 .191 .000

Sample Size × Reliability × RSS 2 2.19 .112 .000

Sample Size × Data Distribution × RSS 2 17.14 .000 .003

Reliability × Data Distribution × RSS 1 1.08 .299 .000

SMH × R² × Sample Size × Reliability 18 .53 .948 .001

SMH × R² × Sample Size × Data Distribution 18 1.68 .036 .003

SMH × R² × Sample Size × RSS 18 2.11 .004 .003

SMH × R² × Reliability × Data Distribution 9 .68 .725 .001

SMH × R² × Reliability × RSS 9 .80 .614 .001

SMH × R² × Data Distribution × RSS 9 1.52 .135 .001

SMH × Sample Size × Reliability × Data Distribution 6 .60 .730 .000

SMH × Sample Size × Reliability × RSS 6 .79 .577 .000

SMH × Sample Size × Data Distribution × RSS 6 2.41 .025 .001

SMH × Reliability × Data Distribution × RSS 3 2.06 .104 .001

R² × Sample Size × Reliability × Data Distribution 6 1.52 .168 .001

R² × Sample Size × Reliability × RSS 6 1.04 .399 .001

R² × Sample Size × Data Distribution × RSS 6 4.75 .000 .003

R² × Reliability × Data Distribution × RSS 3 .26 .851 .000

Sample Size × Reliability × Data Distribution × RSS 2 .53 .588 .000

SMH × R² × Sample Size × Reliability × Data Distribution 18 .70 .817 .001

SMH × R² × Sample Size × Reliability × RSS 18 .70 .811 .001

SMH × R² × Sample Size × Data Distribution × RSS 18 .99 .473 .002

SMH × R² × Reliability × Data Distribution × RSS 9 .50 .874 .000

SMH × Sample Size × Reliability × Data Distribution × RSS 6 1.71 .115 .001

R² × Sample Size × Reliability × Data Distribution × RSS 6 1.41 .206 .001

SMH × R² × Sample Size × Reliability × Data Distribution × RSS 18 .96 .502 .002

Error 11,136    

Note:  df = degrees of freedom; MAB = mean absolute bias; RSS = relative segment size; SMH = structural model heterogeneity.
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Table E3.  Within-Subjects Effects (Part I)

Source of Variance in MAB df F Sig. Partial η²
Method 1 952.31 .000 .079

Method × SMH 3 217.47 .000 .055

Method × R² 3 137.14 .000 .036

Method × Sample Size 2 4.66 .009 .001

Method × Reliability 1 .00 .974 .000

Method × Data Distribution 1 87.97 .000 .008

Method × RSS 1 104.01 .000 .009

Method × SMH × R² 9 12.84 .000 .010

Method × SMH × Sample Size 6 2.79 .010 .002

Method × SMH × Reliability 3 .26 .854 .000

Method × SMH × Data Distribution 3 37.26 .000 .010

Method × SMH × RSS 3 .88 .450 .000

Method × R² × Sample Size 6 1.84 .087 .001

Method × R² × Reliability 3 .02 .995 .000

Method × R² × Data Distribution 3 19.48 .000 .005

Method × R² × RSS 3 3.98 .008 .001

Method × Sample Size × Reliability 2 .27 .765 .000

Method × Sample Size × Data Distribution 2 17.60 .000 .003

Method × Sample Size × RSS 2 16.60 .000 .003

Method × Reliability × Data Distribution 1 .02 .876 .000

Method × Reliability × RSS 1 .149 .700 .000

Method × Data Distribution × RSS 1 14.37 .000 .001

Method × SMH × R² × Sample Size 18 .89 .589 .001

Method × SMH × R² × Reliability 9 1.33 .215 .001

Method × SMH × R² × Data Distribution 9 2.07 .029 .002

Method × SMH × R² × RSS 9 4.56 .000 .004

Method × SMH × Sample Size × Reliability 6 .73 .626 .000

Method × SMH × Sample Size × Data Distribution 6 3.94 .001 .002

Method × SMH × Sample Size × RSS 6 1.72 .112 .001

Method × SMH × Reliability × Data Distribution 3 .74 .527 .000

Method × SMH × Reliability × RSS 3 1.02 .381 .000

Method × SMH × Data Distribution × RSS 3 18.88 .000 .005

Method × R² × Sample Size × Reliability 6 .28 .945 .000

Method × R² × Sample Size × Data Distribution 6 2.09 .051 .001

Method × R² × Sample Size × RSS 6 3.57 .002 .002

Method × R² × Reliability × Data Distribution 3 .29 .835 .000

Method × R² × Reliability × RSS 3 1.28 .278 .000

Method × R² × Data Distribution × RSS 3 8.97 .000 .002

Method × Sample Size × Reliability × Data Distribution 2 .69 .501 .000

Method × Sample Size × Reliability × RSS 2 .13 .876 .000

Method × Sample Size × Data Distribution × RSS 2 8.98 .000 .002

Method × Reliability × Data Distribution × RSS 1 .00 .993 .000

Note:  df = degrees of freedom; MAB = mean absolute bias; RSS = relative segment size; SMH = structural model heterogeneity; all significant
and substantial effects (i.e., all effects that explain more than 2% of the total variance in MAB implying a partial η² of more than .02) are highlighted
in grey.
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Table E4.  Within-Subjects Effect (Part II)

Source of Variance in MAB df F Sig. Partial η²
Method × SMH × R² × Sample Size × Reliability 18 .56 .930 .001

Method × SMH × R² × Sample Size × Data Distribution 18 1.95 .009 .003

Method × SMH × R² × Sample Size × RSS 18 1.47 .092 .002

Method × SMH × R² × Reliability × Data Distribution 9 .95 .484 .001

Method × SMH × R² × Reliability × RSS 9 1.07 .380 .001

Method × SMH × R² × Data Distribution × RSS 9 1.96 .040 .002

Method × SMH × Sample Size × Reliability × Data Distribution 6 .54 .775 .000

Method × SMH × Sample Size × Reliability × RSS 6 1.23 .286 .001

Method × SMH × Sample Size × Data Distribution × RSS 6 2.62 .015 .001

Method × SMH × Reliability × Data Distribution × RSS 3 .30 .828 .000

Method × R² × Sample Size × Reliability × Data Distribution 6 1.20 .305 .001

Method × R² × Sample Size × Reliability × RSS 6 .56 .766 .000

Method × R² × Sample Size × Data Distribution × RSS 6 2.59 .016 .001

Method × R² × Reliability × Data Distribution × RSS 3 .34 .798 .000

Method × Sample Size × Reliability × Data Distribution × RSS 2 .34 .711 .000

Method × SMH × R² × Sample Size × Reliability × Data Distribution 18 .49 .965 .001

Method × SMH × R² × Sample Size × Reliability × RSS 18 .44 .980 .001

Method × SMH × R² × Sample Size × Data Distribution × RSS 18 1.76 .024 .003

Method × SMH × R² × Reliability × Data Distribution × RSS 9 .47 .897 .000

Method × SMH × Sample Size × Reliability × Data Distribution × RSS 6 1.62 .138 .001

Method × R² × Sample Size × Reliability × Data Distribution × RSS 6 .32 .928 .000

Method × SMH × R² × Sample Size × Reliability × Data Distribution × RSS 18 .83 .667 .001

Error(Method) 11,136    

Note:  df = degrees of freedom; MAB = mean absolute bias; RSS = relative segment size; SMH = structural model heterogeneity.
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Appendix F

ANOVA Results—Model 2 (Formative Measures)

Tables F1 to F7 present the ANOVA results for model 2 (formative measures) explaining MAB by method (PLS-POS/FIMIX-PLS) and the
seven design factors.  All significant and substantial effects (i.e., all effects that explain more than 2 percent of the total variance in MAB
implying a partial η² of more than .02) are highlighted in grey.

We find that the R², structural and measurement model heterogeneity, sample size, multicollinearity and data distribution, the interaction of
structural and measurement model heterogeneity, and the interaction of sample size and relative segment size have a substantial and significant
effect on the MAB of both methods.  Furthermore, there is a significant and substantial difference in the parameter recovery (MAB) of the two
methods (PLS-POS and FIMIX-PLS) and for the two-way interaction effects between method and R², multicollinearity, and structural and
measurement model heterogeneity.  Method even has a significant and substantial interaction effect with both structural and measurement model
heterogeneity (three-way interaction).

Table F1.  Between-Subjects Effects (Part I)

Source of Variance in MAB df F Sig. Partial η²
Intercept 1 142,696.80 .00 .740

SMH 3 7,605.33 .00 .313

MMH 2 2,912.99 .00 .104

R² 3 4,286.31 .00 .204

Sample Size 2 864.77 .00 .033

RSS 1 629.83 .00 .012

Data Distribution 1 1,465.75 .00 .028

Multicollinearity 2 848.18 .00 .033

SMH × MMH 6 298.09 .00 .034

SMH × R² 9 44.28 .00 .008

MMH × R² 6 5.82 .00 .006

Note:  df = degrees of freedom; MAB = mean absolute bias; MMH = measurement model heterogeneity; RSS = relative segment size;
SMH = structural model heterogeneity; all significant and substantial effects (i.e., all effects that explain more than 2% of the total variance in MAB
implying a partial η² of more than .02) are highlighted in grey.
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Table F2.  Between-Subjects Effects (Part II)

Source of Variance in MAB df F Sig. Partial η²
SMH × Sample Size 6 31.10 .00 .004
MMH × Sample Size 4 15.06 .00 .001
R² × Sample Size 6 46.43 .00 .006
SMH × RSS 3 78.68 .00 .005
MMH × RSS 2 .69 .50 .000
R² × RSS 3 87.86 .00 .005
Sample Size × RSS 2 1,426.86 .00 .054
SMH × Data Distribution 3 12.04 .00 .001
MMH × Data Distribution 2 7.61 .00 .000
R² × Data Distribution 3 3.21 .02 .000
Sample Size × Data Distribution 2 28.39 .00 .001
RSS × Data Distribution 1 2.26 .13 .000
SMH × Multicollinearity 6 109.17 .00 .013
MMH × Multicollinearity 4 287.84 .00 .022
R² × Multicollinearity 6 5.39 .00 .001
Sample Size × Multicollinearity 4 28.36 .00 .002
RSS × Multicollinearity 2 15.71 .00 .001
Data Distribution × Multicollinearity 2 16.50 .00 .001
SMH × MMH × R² 18 25.86 .00 .009
SMH × MMH × Sample Size 12 5.18 .00 .001
SMH × R² × Sample Size 18 .78 .73 .000
MMH × R² × Sample Size 12 .48 .93 .000
SMH × MMH × RSS 6 5.48 .00 .001
SMH × R² × RSS 9 .60 .80 .000
MMH × R² × RSS 6 2.66 .01 .000
SMH × Sample Size × RSS 6 42.87 .00 .005
MMH × Sample Size × RSS 4 6.23 .00 .000
R² × Sample Size × RSS 6 59.73 .00 .007
SMH × MMH × Data Distribution 6 3.35 .00 .000
SMH × R² × Data Distribution 9 12.58 .00 .002
MMH × R² × Data Distribution 6 1.79 .10 .000
SMH × Sample Size × Data Distribution 6 9.02 .00 .001
MMH × Sample Size × Data Distribution 4 2.33 .05 .000
R² × Sample Size × Data Distribution 6 2.76 .01 .000
SMH × RSS × Data Distribution 3 13.81 .00 .001
MMH × RSS × Data Distribution 2 1.50 .22 .000
R² × RSS × Data Distribution 3 2.64 .05 .000
Sample Size × RSS × Data Distribution 2 21.48 .00 .001
SMH × MMH × Multicollinearity 12 18.31 .00 .004
SMH × R² × Multicollinearity 18 7.30 .00 .003
MMH × R² × Multicollinearity 12 1.16 .31 .000
SMH × Sample Size × Multicollinearity 12 11.15 .00 .003
MMH × Sample Size × Multicollinearity 8 3.17 .00 .001
R² × Sample Size × Multicollinearity 12 .88 .57 .000
SMH × RSS × Multicollinearity 6 12.44 .00 .001
MMH × RSS × Multicollinearity 4 8.08 .00 .001

Note:  df = degrees of freedom; MAB = mean absolute bias; MMH = measurement model heterogeneity; RSS = relative segment size;
SMH = structural model heterogeneity; all significant and substantial effects (i.e., all effects that explain more than 2% of the total variance in MAB
implying a partial η² of more than .02) are highlighted in grey.
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Table F3.  Between-Subjects Effects (Part III)

Source of Variance in MAB df F Sig. Partial η²
R² × RSS × Multicollinearity 6 1.29 .26 .000

Sample Size × RSS × Multicollinearity 4 18.22 .00 .001

SMH × Data Distribution × Multicollinearity 6 .94 .46 .000

MMH × Data Distribution × Multicollinearity 4 3.81 .00 .000

R² × Data Distribution × Multicollinearity 6 .88 .51 .000

Sample Size × Data Distribution × Multicollinearity 4 11.09 .00 .001

RSS × Data Distribution × Multicollinearity 2 12.97 .00 .001

SMH × MMH × R² × Sample Size 36 .75 .86 .001

SMH × MMH × R² × RSS 18 .86 .63 .000

SMH × MMH × Sample Size × RSS 12 5.31 .00 .001

SMH × R² × Sample Size × RSS 18 1.92 .01 .001

MMH × R² × Sample Size × RSS 12 .36 .98 .000

SMH × MMH × R² × Data Distribution 18 1.65 .04 .001

SMH × MMH × Sample Size × Data Distribution 12 3.87 .00 .001

SMH × R² × Sample Size × Data Distribution 18 1.36 .14 .000

MMH × R² × Sample Size × Data Distribution 12 .68 .78 .000

SMH × MMH × RSS × Data Distribution 6 1.80 .09 .000

SMH × R² × RSS × Data Distribution 9 1.57 .12 .000

MMH × R² × RSS × Data Distribution 6 .54 .78 .000

SMH × Sample Size × RSS × Data Distribution 6 8.98 .00 .001

MMH × Sample Size × RSS × Data Distribution 4 3.19 .01 .000

R² × Sample Size × RSS × Data Distribution 6 1.04 .40 .000

SMH × MMH × R² × Multicollinearity 36 2.16 .00 .002

SMH × MMH × Sample Size × Multicollinearity 24 .79 .75 .000

SMH × R² × Sample Size × Multicollinearity 36 1.62 .01 .001

MMH × R² × Sample Size × Multicollinearity 24 1.04 .41 .000

SMH × MMH × RSS × Multicollinearity 12 2.41 .00 .001

SMH × R² × RSS × Multicollinearity 18 1.19 .26 .000

MMH × R² × RSS × Multicollinearity 12 1.38 .17 .000

SMH × Sample Size × RSS × Multicollinearity 12 9.08 .00 .002

MMH × Sample Size × RSS × Multicollinearity 8 1.95 .05 .000

R² × Sample Size × RSS × Multicollinearity 12 1.38 .17 .000

SMH × MMH × Data Distribution × Multicollinearity 12 6.34 .00 .002

Note:  df = degrees of freedom; MAB = mean absolute bias; MMH = measurement model heterogeneity; RSS = relative segment size;

SMH = structural model heterogeneity.
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Table F4.  Between-Subjects Effects (Part IV)

Source of Variance in MAB df F Sig. Partial η²
SMH × R² × Data Distribution × Multicollinearity 18 1.72 .03 .001

MMH × R² × Data Distribution × Multicollinearity 12 1.12 .34 .000

SMH × Sample Size × Data Distribution × Multicollinearity 12 10.19 .00 .002

MMH × Sample Size × Data Distribution × Multicollinearity 8 .87 .54 .000

R² × Sample Size × Data Distribution × Multicollinearity 12 2.23 .01 .001

SMH × RSS × Data Distribution × Multicollinearity 6 9.02 .00 .001

MMH × RSS × Data Distribution × Multicollinearity 4 .49 .74 .000

R² × RSS × Data Distribution × Multicollinearity 6 1.10 .36 .000

Sample Size × RSS × Data Distribution × Multicollinearity 4 24.61 .00 .002

SMH × MMH × R² × Sample Size × RSS 36 .75 .86 .001

SMH × MMH × R² × Sample Size × Data Distribution 36 .74 .88 .001

SMH × MMH × R² × RSS × Data Distribution 18 1.20 .25 .000

SMH × MMH × Sample Size × RSS × Data Distribution 12 1.62 .08 .000

SMH × R² × Sample Size × RSS × Data Distribution 18 .69 .83 .000

MMH × R² × Sample Size × RSS × Data Distribution 12 1.20 .27 .000

SMH × MMH × R² × Sample Size × Multicollinearity 72 1.13 .21 .002

SMH × MMH × R² × RSS × Multicollinearity 36 1.66 .01 .001

SMH × MMH × Sample Size × RSS × Multicollinearity 24 1.66 .02 .001

SMH × R² × Sample Size × RSS × Multicollinearity 36 .52 .99 .000

MMH × R² × Sample Size × RSS × Multicollinearity 24 .75 .81 .000

SMH × MMH × R² × Data Distribution × Multicollinearity 36 .95 .55 .001

SMH × MMH × Sample Size × Data Distribution × Multicollinearity 24 1.52 .05 .001

SMH × R² × Sample Size × Data Distribution × Multicollinearity 36 1.33 .09 .001

MMH × R² × Sample Size × Data Distribution × Multicollinearity 24 .90 .60 .000

SMH × MMH × RSS × Data Distribution × Multicollinearity 12 1.52 .11 .000

SMH × R² × RSS × Data Distribution × Multicollinearity 18 1.90 .01 .001

MMH × R² × RSS × Data Distribution × Multicollinearity 12 1.45 .14 .000

SMH × Sample Size × RSS × Data Distribution × Multicollinearity 12 8.65 .00 .002

MMH × Sample Size × RSS × Data Distribution × Multicollinearity 8 1.13 .34 .000

R² × Sample Size × RSS × Data Distribution × Multicollinearity 12 .85 .60 .000

SMH × MMH × R² × Sample Size × RSS × Data Distribution 36 .98 .51 .001

SMH × MMH × R² × Sample Size × RSS × Multicollinearity 72 .84 .84 .001

SMH × MMH × R² × Sample Size × Data Distribution × Multicollinearity 72 1.07 .33 .002

SMH × MMH × R² × RSS × Data Distribution × Multicollinearity 36 1.24 .15 .001

SMH × MMH × Sample Size × RSS × Data Distribution ×
Multicollinearity

24 1.12 .32 .001

SMH × R² × Sample Size × RSS × Data Distribution × Multicollinearity 36 1.09 .32 .001

MMH × R² × Sample Size × RSS × Data Distribution × Multicollinearity 24 .87 .65 .000

SMH × MMH × R² × Sample Size × RSS × Data Distribution ×
Multicollinearity

72 1.05 .36 .002

Error 50,112

Note:  df = degrees of freedom; MAB = mean absolute bias; MMH = measurement model heterogeneity; RSS = relative segment size;

SMH = structural model heterogeneity.
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Table F5.  Within-Subjects Effects (Part I)

Source of Variance in MAB df F Sig. Partial η²
Method 1 3,938.52 .00 .073
Method × SMH 3 3,987.98 .00 .193
Method × MMH 2 6,771.05 .00 .213
Method × R² 3 826.32 .00 .047
Method × Sample Size 2 227.55 .00 .009
Method × RSS 1 171.66 .00 .003
Method × Data Distribution 1 2.97 .08 .000
Method × Multicollinearity 2 1,739.12 .00 .065
Method × SMH × MMH 6 976.49 .00 .105
Method × SMH × R² 9 83.50 .00 .015
Method × MMH × R² 6 6.13 .00 .001
Method × SMH × Sample Size 6 22.80 .00 .003
Method × MMH × Sample Size 4 3.13 .01 .000
Method × R² × Sample Size 6 3.95 .00 .000
Method × SMH × RSS 3 60.96 .00 .004
Method × MMH × RSS 2 12.78 .00 .001
Method × R² × RSS 3 15.69 .00 .001
Method × Sample Size × RSS 2 163.40 .00 .006
Method × SMH × Data Distribution 3 54.31 .00 .003
Method × MMH × Data Distribution 2 3.39 .03 .000
Method × R² × Data Distribution 3 5.19 .00 .000
Method × Sample Size × Data Distribution 2 12.45 .00 .000
Method × RSS × Data Distribution 1 56.16 .00 .001
Method × SMH × Multicollinearity 6 372.96 .00 .043
Method × MMH × Multicollinearity 4 257.24 .00 .020
Method × R² × Multicollinearity 6 9.69 .00 .001
Method × Sample Size × Multicollinearity 4 22.84 .00 .002
Method × RSS × Multicollinearity 2 5.85 .00 .000
Method × Data Distribution × Multicollinearity 2 11.81 .00 .000
Method × SMH × MMH × R² 18 11.49 .00 .004
Method × SMH × MMH × Sample Size 12 2.44 .00 .001
Method × SMH × R² × Sample Size 18 3.68 .00 .001
Method × MMH × R² × Sample Size 12 1.39 .16 .000
Method × SMH × MMH × RSS 6 14.80 .00 .002
Method × SMH × R² × RSS 9 12.50 .00 .002
Method × MMH × R² × RSS 6 2.61 .02 .000
Method × SMH × Sample Size × RSS 6 47.94 .00 .006
Method × MMH × Sample Size × RSS 4 13.37 .00 .001
Method × R² × Sample Size × RSS 6 19.62 .00 .002
Method × SMH × MMH × Data Distribution 6 1.74 .11 .000
Method × SMH × R² × Data Distribution 9 5.01 .00 .001
Method × MMH × R² × Data Distribution 6 3.04 .01 .000
Method × SMH × Sample Size × Data Distribution 6 7.68 .00 .001
Method × MMH × Sample Size × Data Distribution 4 .30 .88 .000
Method × R² × Sample Size × Data Distribution 6 3.34 .00 .000
Method × SMH × RSS × Data Distribution 3 3.68 .01 .000
Method × MMH × RSS × Data Distribution 2 .76 .47 .000
Method × R² × RSS × Data Distribution 3 .43 .73 .000
Method × Sample Size × RSS × Data Distribution 2 19.04 .00 .001
Method × SMH × MMH × Multicollinearity 12 28.62 .00 .007
Method × SMH × R² × Multicollinearity 18 5.04 .00 .002
Method × MMH × R² × Multicollinearity 12 .46 .94 .000

Note:  df = degrees of freedom; MAB = mean absolute bias; MMH = measurement model heterogeneity; RSS = relative segment size;
SMH = structural model heterogeneity; all significant and substantial effects (i.e., all effects that explain more than 2% of the total variance in MAB
implying a partial η² of more than .02) are highlighted in grey.
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Table F6.  Within-Subjects Effects (Part II)

Source of Variance in MAB df F Sig. Partial η²
Method × SMH × Sample Size × Multicollinearity 12 11.91 .00 .003
Method × MMH × Sample Size × Multicollinearity 8 1.40 .19 .000
Method × R² × Sample Size × Multicollinearity 12 .91 .53 .000
Method × SMH × RSS × Multicollinearity 6 16.91 .00 .002
Method × MMH × RSS × Multicollinearity 4 3.91 .00 .000
Method × R² × RSS × Multicollinearity 6 1.19 .31 .000
Method × Sample Size × RSS × Multicollinearity 4 20.68 .00 .002
Method × SMH × Data Distribution × Multicollinearity 6 6.57 .00 .001
Method × MMH × Data Distribution × Multicollinearity 4 3.63 .01 .000
Method × R² × Data Distribution × Multicollinearity 6 .99 .43 .000
Method × Sample Size × Data Distribution × Multicollinearity 4 24.39 .00 .002
Method × RSS × Data Distribution × Multicollinearity 2 28.84 .00 .001
Method × SMH × MMH × R² × Sample Size 36 1.35 .08 .001
Method × SMH × MMH × R² × RSS 18 1.48 .08 .001
Method × SMH × MMH × Sample Size × RSS 12 1.99 .02 .000
Method × SMH × R² × Sample Size × RSS 18 2.48 .00 .001
Method × MMH × R² × Sample Size × RSS 12 2.34 .01 .001
Method × SMH × MMH × R² × Data Distribution 18 .86 .63 .000
Method × SMH × MMH × Sample Size × Data Distribution 12 2.68 .00 .001
Method × SMH × R² × Sample Size × Data Distribution 18 1.28 .19 .000
Method × MMH × R² × Sample Size × Data Distribution 12 .37 .97 .000
Method × SMH × MMH × RSS × Data Distribution 6 1.18 .32 .000
Method × SMH × R² × RSS × Data Distribution 9 3.45 .00 .001
Method × MMH × R² × RSS × Data Distribution 6 .51 .80 .000
Method × SMH × Sample Size × RSS × Data Distribution 6 8.37 .00 .001
Method × MMH × Sample Size × RSS × Data Distribution 4 1.21 .31 .000
Method × R² × Sample Size × RSS × Data Distribution 6 1.13 .34 .000
Method × SMH × MMH × R² × Multicollinearity 36 1.29 .11 .001
Method × SMH × MMH × Sample Size × Multicollinearity 24 1.28 .16 .001
Method × SMH × R² × Sample Size × Multicollinearity 36 1.36 .08 .001
Method × MMH × R² × Sample Size × Multicollinearity 24 1.05 .40 .001
Method × SMH × MMH × RSS × Multicollinearity 12 3.27 .00 .001
Method × SMH × R² × RSS × Multicollinearity 18 1.02 .43 .000
Method × MMH × R² × RSS × Multicollinearity 12 1.40 .16 .000
Method × SMH × Sample Size × RSS × Multicollinearity 12 8.14 .00 .002
Method × MMH × Sample Size × RSS × Multicollinearity 8 2.47 .01 .000
Method × R² × Sample Size × RSS × Multicollinearity 12 1.36 .18 .000
Method × SMH × MMH × Data Distribution × Multicollinearity 12 2.63 .00 .001
Method × SMH × R² × Data Distribution × Multicollinearity 18 1.65 .04 .001
Method × MMH × R² × Data Distribution × Multicollinearity 12 .82 .63 .000
Method × SMH × Sample Size × Data Distribution × Multicollinearity 12 7.24 .00 .002
Method × MMH × Sample Size × Data Distribution × Multicollinearity 8 1.01 .42 .000
Method × R² × Sample Size × Data Distribution × Multicollinearity 12 1.42 .15 .000
Method × SMH × RSS × Data Distribution × Multicollinearity 6 6.94 .00 .001
Method × MMH × RSS × Data Distribution × Multicollinearity 4 1.40 .23 .000
Method × R² × RSS × Data Distribution × Multicollinearity 6 1.59 .15 .000
Method × Sample Size × RSS × Data Distribution × Multicollinearity 4 15.65 .00 .001
Method × SMH × MMH × R² × Sample Size × RSS 36 1.88 .00 .001
Method × SMH × MMH × R² × Sample Size × Data Distribution 36 .80 .80 .001

Method × SMH × MMH × R² × RSS × Data Distribution 18 1.00 .45 .000

Note:  df = degrees of freedom; MAB = mean absolute bias; MMH = measurement model heterogeneity; RSS = relative segment size;
SMH = structural model heterogeneity.
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Table F7.  Within-Subjects Effects (Part III)

Source of Variance in MAB df F Sig.
Partial
η²

Method × SMH × MMH × Sample Size × RSS × Data Distribution 12 2.14 .01 .001

Method × SMH × R² × Sample Size × RSS × Data Distribution 18 1.53 .07 .001

Method × MMH × R² × Sample Size × RSS × Data Distribution 12 .77 .68 .000

Method × SMH × MMH × R² × Sample Size × Multicollinearity 72 .91 .70 .001

Method × SMH × MMH × R² × RSS × Multicollinearity 36 1.28 .12 .001

Method × SMH × MMH × Sample Size × RSS × Multicollinearity 24 1.95 .00 .001

Method × SMH × R² × Sample Size × RSS × Multicollinearity 36 1.37 .07 .001

Method × MMH × R² × Sample Size × RSS × Multicollinearity 24 .90 .60 .000

Method × SMH × MMH × R² × Data Distribution × Multicollinearity 36 .98 .50 .001

Method × SMH × MMH × Sample Size × Data Distribution × Multicollinearity 24 2.46 .00 .001

Method × SMH × R² × Sample Size × Data Distribution × Multicollinearity 36 1.49 .03 .001

Method × MMH × R² × Sample Size × Data Distribution × Multicollinearity 24 .70 .85 .000

Method × SMH × MMH × RSS × Data Distribution × Multicollinearity 12 1.75 .05 .000

Method × SMH × R² × RSS × Data Distribution × Multicollinearity 18 1.71 .03 .001

Method × MMH × R² × RSS × Data Distribution × Multicollinearity 12 1.37 .17 .000

Method × SMH × Sample Size × RSS × Data Distribution × Multicollinearity 12 8.67 .00 .002

Method × MMH × Sample Size × RSS × Data Distribution × Multicollinearity 8 1.29 .24 .000

Method × R² × Sample Size × RSS × Data Distribution × Multicollinearity 12 .78 .68 .000

Method × SMH × MMH × R² × Sample Size × RSS × Data Distribution 36 .85 .73 .001

Method × SMH × MMH × R² × Sample Size × RSS × Multicollinearity 72 1.05 .36 .002

Method × SMH × MMH × R² × Sample Size × Data Distribution × Multicollinearity 72 1.20 .11 .002

Method × SMH × MMH × R² × RSS × Data Distribution × Multicollinearity 36 1.53 .02 .001

Method × SMH × MMH × Sample Size × RSS × Data Distribution × Multicollinearity 24 2.53 .00 .001

Method × SMH × R² × Sample Size × RSS × Data Distribution × Multicollinearity 36 1.33 .09 .001

Method × MMH × R² × Sample Size × RSS × Data Distribution × Multicollinearity 24 1.25 .18 .001

Method × SMH × MMH × R² × Sample Size × RSS × Data Distribution ×
Multicollinearity

72 .96 .58 .001

Error(Method) 50,112

Note:  df = degrees of freedom; MAB = mean absolute bias; MMH = measurement model heterogeneity; RSS = relative segment size;
SMH = structural model heterogeneity.
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