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Appendix A

Correlation Matrix and Estimation Results

Table A1. Correlation Matrix

Variables v1 v2 v3 v4 v5 v6 v7 v8

v1 Margin 1

v2 ProdCAP 0.25* 1

v3 ITUsage 0.16* 0.06 1

v4 Capex 0.11 0.01 0.06 1

v5 TrainCost 0.07 0.05 0.04 0.13* 1

v6 Size -0.08 -0.08 0.41* -0.12* -0.03 1

v7 Age -0.01 -0.12* 0.07 -0.01 0.05 0.20* 1

v8 PlantType -0.01 0.05 -0.20* 0.01 -0.02 -0.30* -0.02 1

*Statistically significant at p = 0.05
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Table A2.  Estimation Results for Production Capability Model (Without ITSpend)

System System 1 System 2 System 3

Model Model 1 Model 2 Model 1 Model 3 Model 1 Model 4

Dependent Variable ProdCap Margin ProdCap Margin ProdCap Margin

Intercept
1.095

(1.123)
36.024***

(9.014)
1.296

(1.152)
48.31***

(9.468)
1.095

(1.123)
41.07***

(9.137)

ProdCap
– 10.617***

(2.283)
– – –

9.813***

(2.281)

ITUsage
0.278**

(0.15)
–

0.323**

(0.155)
3.895***

(1.241)
0.278**

(0.15)
3.03***

(1.194)

Capex
-0.02
(0.032)

0.57**

(0.26)
-0.022
(0.032)

0.464**

(0.269)
-0.02
(0.032)

0.49**

(0.259)

TrainCost
1.208*

(0.743)
0.245

(5.604)
1.381**

(0.779)
3.31

(5.641)
1.208*

(0.743)
0.026

(5.545)

Size
-0.119
(0.149)

-1.6*

(1.101)
-0.163
(0.153)

-2.966***

(1.234)
-0.119
(0.149)

-2.771***

(1.183)

Age
-0.069**

(0.035)
0.214

(0.277)
-0.076**

(0.035)
0.019

(0.293)
-0.069**

(0.035)
0.222

(0.274)

PlantType
0.069

(0.329)
-1.864
(2.608)

0.107
(0.339)

-0.947
(2.736)

0.069
(0.329)

-1.357
(2.588)

F-Val 2.9515 3.4579 3.0056 2.4878 2.9514 3.7841

R² 0.1335 0.1529 0.1356 0.1150 0.1335 0.1760

Adj R² 0.0919 0.1123 0.0941 0.0725 0.0919 0.1330

Heteroscdasticity
Adjustment

No Yes No No No Yes

Industry dummies are included in all estimation models.   Significant one-sided * at p <  0.10; ** at p < 0.05; and *** at p < 0.01.  Standard errors

are shown in parentheses.  Sobel Mediation test p = 0.03 and Goodman Mediation test p = 0.025 (one-sided p-values).

Appendix B

Comparison of DEA-Based Methods with Other Approaches

We compared our DEA-based approach for conceptualizing production capability with three other approaches commonly used in the RBV
literature:  (1) structural equation modeling (SEM); (2) stochastic frontier estimation (SFE); and (3) principal component analysis (PCA).  We
compared the R² and Adj R² values of these estimation methods with those obtained from the DEA approach, as reported in Table 7.  Based
on the greater R² and Adj R² values of the DEA-based methods, we concluded that our DEA approach exhibited greater explanatory power
in explaining variations in plant performance.

Next, we provide further details of our estimation for each of these alternative methods.

Structural Equation Modeling

One stream of the literature on capabilities conceptualizes and operationalizes capabilities as a latent variable governing manifested
measurement items using the SEM techniques (Schroder et al. 2002).  Typically these studies involve survey questions that are designed to
elicit responses (measurement items) based on perceptions about competencies and capabilities associated with different functional areas
(Bharadwaj et al. 2007; Pavlou and El Sawy 2010).
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** PLS model controls for Training Cost, Age, Size, Plant Type and Industry Dummies

Figure B1.  PLS Estimation Results

In order to make a direct comparison between DEA- and SEM-based methods, we created two constructs, each representing a latent variable
that governs inputs and outputs to our DEA model respectively.  The construct “Resources” captures Labor, Material Costs, and IT Spending
in a formative manner; and the construct “Capability” incorporates CycleTime, TurnRate, OnTime, and AcceptRate in a reflective manner.

We then used partial least squares (PLS) techniques to estimate the SEM model specified in Figure B1. PLS was preferred here to LISREL
because of the presence of the “Heywood cases,” in which some of the loadings can be negative (Fornell and Bookstein 1982).  We used
SmartPLS 2.0 to estimate the path coefficients as well as error variances. Figure B1 depicts the estimated path coefficients, as well as the
t-values obtained from bootstrapping.

According to Chin (1998), existing goodness of fit measures assume that all measures in the assumed model are reflective and are related to
how strongly the model accommodates sample covariances.  However, some SEM procedures, such as PLS, have different objective functions
and allow for formative measures.  It is suggested that more attention should be paid to the fit of the SEM model when both reflective and
formative constructs are present.  In addition, Bollen and Long (1993) also suggest that fit of the components of a model, specifically R², can
provide insight into the choice of a goodness-of-fit index.   For this reason, we focused on R² to evaluate the fit of the SEM model.  We
observed that the R² of Model 1 in the DEA-based approach was 0.130, whereas in SEM it was 0.118.  Similarly, the R² of Model 4 using our
approach was 0.181, whereas it dropped to 0.115 using SEM.  Of greater importance, none of the path coefficients in the SEM model were
significant except ITUsage ö Margin (one-sided p-value = 0.058), rendering an overall, insignificant model.  We also noted that the latent
variable conceptualization of capability did not capture the relative capability across plants.
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Stochastic Frontier Estimation (SFE)

The key limitation of SFE compared with DEA is that the former only accommodates a single output, while it is common for firms to make
tradeoffs between multiple outputs.  Nevertheless, for the purpose of comparing SFE with the DEA approach in our case, we factorized the
multiple outputs into a single factor, Fact_Out, using principal component analysis (PCA), while maintaining the same input set.  We followed
the same procedure specified in Li et al. (2010) in developing the production function.  We estimated the technical efficiency scores using a
half-normal distribution for the inefficiency variable in the SFE model (Battese and Coelli 1988). We then applied “systems of equations”
estimation using the SFE-based efficiency scores.  These results are presented in Table B1.  We observed that the R² of Model 1 of the SFE
approach was lower than the corresponding values in the DEA approach (i.e., 0.113 versus 0.130). Likewise, the R2 of Model 4 decreased from
0.181 to 0.119 when SFE was applied.

Table B1.  Estimation Results with Stochastic Frontier Estimation

System System 1 System 2 System 3

Model Model 1 Model 2 Model 1 Model 3 Model 1 Model 4

Dependent Variable Fact_Out Margin Fact_Out Margin Fact_Out Margin

Intercept
0.616***

(0.082)
36.238***

(10.349)
0.616***

(0.082)
48.31***

(9.468)
0.616***

(0.082)
43.67***

(10.49)

Fact_Out –
10.341*

(7.382)
– – –

7.527
(7.33)

ITUsage
0.022**

(0.011)
–

0.022**

(0.011)
3.895***

(1.241)
0.022**

(0.011)
3.73***

(1.251)

Capex
0.001

(0.002)
0.556**

(0.271)
0.001

(0.002)
0.464**

(0.269)
0.001

(0.002)
0.457**

(0.269)

TrainCost
0.04

(0.049)
3.478

(5.734)
0.04

(0.049)
3.31

(5.641)
0.04

(0.049)
3.012

(5.648)

Size
0

(0.011)
-1.563*

(1.158)
0

(0.011)
-2.966***

(1.234)
0

(0.011)
-2.967***

(1.234)

Age
-0.004*

(0.003)
0.05

(0.299)
-0.004*

(0.003)
0.019

(0.293)
-0.004*

(0.003)
0.049

(0.294)

PlantType
0.057***

(0.024)
-2.198
(2.797)

0.057***

(0.024)
-0.947
(2.736)

0.057***

(0.024)
-1.373
(2.767)

F-Value 2.43 1.83 2.43 2.488 2.43 2.386

R² 0.113 0.087 0.113 0.115 0.113 0.119

Adj R² 0.070 0.043 0.070 0.073 0.070 0.073

N 263 263 263

Industry dummies are included in all estimation models.  Significant one-sided at p <  0.10; ** at p < 0.05; and *** at p < 0.01.  Standard errors are

shown in parentheses.

Principal Component Analysis (PCA)

PCA has been used to conceptualize capability as a driver of performance.  This is typically done by combining multiple process output
measures into a single construct using the loadings derived from PCA as the weights (e.g., Ray et al. 2005; Rosenzweig et al. 2003).  However,
there may be various dimensions of outcomes in analyzing the operational and financial performance of organizations (Venkatraman and
Ramanujam 1986).  For example, indicators for operational performance may include innovation and productivity, while financial performance
indicators may include earnings growth and stock price.  Often, these disparate dimensions of outcomes do not converge (Combs et al. 2005).
Therefore, one of the challenges of merging multiple outputs into a single construct lies in the possible tradeoffs among these various
performance measures. 
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We applied PCA to our output variables and transformed them into one factor, in order to check if a single construct of output performance
can satisfactorily represent plant production capability.  We used PCA to merge CycleTime, TurnRate, OnTime, and AcceptRate into one factor,
Factor_Out.  We present the results obtained from the system of equations estimation using this derived factor in Table B2.  We observed that
Factor_Out failed to explain the variations in Margin in Model 2 as well as Model 4.  In Model 1, none of the input variables appeared to be
significant determinants of Factor_Out and most of the control variables were insignificant. In terms of R2, our DEA-based approach exhibited
better fit across all models.

Table B2.  Estimation Results with Principal Component Analysis

System System 1 System 2 System 3

Model Model 1 Model 2 Model 1 Model 3 Model 1 Model 4

Dependent Variable Factor_Out Margin Factor_Out Margin Factor_Out Margin

Intercept
0.173

(0.533)
42.341***

(9.428)
0.173

(0.533)
47.933***

(9.404)
0.173

(0.533)
47.896***

(9.421)

Factor_Out –
0.75

(1.182)
– – –

0.348
(1.171)

ITUsage
0.141**

(0.07)
–

0.141**

(0.07)
3.755***

(1.257)
0.141**

(0.07)
3.717***

(1.268)

Capex
0.016

(0.015)
0.528**

(0.273)
0.016

(0.015)
0.439*

(0.269)
0.016

(0.015)
0.436*

(0.27)

TrainCost
0.244

(0.309)
3.277

(5.892)
0.244

(0.309)
2.963

(5.758)
0.244

(0.309)
2.873

(5.777)

LaborCost
0.004

(0.007)
–

0.004
(0.007)

–
0.004

(0.007)
–

MaterialCost
-0.002
(0.004)

–
-0.002
(0.004)

–
-0.002
(0.004)

–

ITSpend
-0.014
(0.023)

–
-0.014
(0.023)

–
-0.014
(0.023)

–

Size
-0.022
(0.067)

-1.568*
(1.167)

-0.022
(0.067)

-2.975***

(1.231)
-0.022
(0.067)

-2.971***

(1.234)

Age
-0.023*

(0.016)
0.053

(0.296)
-0.023*

(0.016)
0.058

(0.29)
-0.023*

(0.016)
0.064

(0.291)

PlantType
0.317**

(0.149)
-1.826
(2.781)

0.317**

(0.149)
-0.929
(2.716)

0.317**

(0.149)
-1.025
(2.743)

F-Val 2.192 1.705 2.192 2.492 2.192 2.311

R² 0.124 0.081 0.124 0.114 0.124 0.115

Adj R² 0.071 0.037 0.071 0.072 0.071 0.069

Heteroscedasticity No Yes No Yes No Yes

Industry dummies are included in all estimation models. Standard errors are shown in parentheses.  Significant one-sided * at p <  0.10; ** at p

< 0.05; and *** at p < 0.01. 
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Appendix C

Robustness Check on DEA Sample Size

The DEA literature suggests using large samples for DEA calculation in order to obtain statistical validity in two-stage estimations, where DEA
estimation is followed by a regression analysis (Banker 1993; Iyer et al. 2013).  For this reason, as a robustness check of the sensitivity of our
results to sample size, we excluded industries with less than 30 observations.  Hence, we only kept the industries of Chemicals, Metals,
Machinery, and Electrical.  The total number of observations in our sample decreased to 209, with the exclusion of Nondurables,
Transportation, and Miscellaneous industries.  Our regression results of system of equations estimation are reported in the Table C1.
Accordingly, our results were consistent with this additional analysis. 

Table C1.  System of Equations Estimation Results

System System 1 System 2 System 3

Model Model 1 Model 2 Model 1 Model 3 Model 1 Model 4

Dependent Variable ProdCap Margin ProdCap Margin ProdCap Margin

Intercept
1.67*

(1.295)
32.032***

(10.068)
1.67*

(1.295)
49.865***

(10.762)
1.67*

(1.295)
38.123***

(10.244)

ProdCap –
13.609***

(2.411)
– – –

12.951***

(2.396)

ITUsage
0.233*

(0.168)
–

0.233*

(0.168)
3.99***

(1.395)
0.233*

(0.168)
3.166***

(1.326)

Capex
-0.035
(0.038)

0.783***

(0.301)
-0.035
(0.038)

0.538**

(0.32)
-0.035
(0.038)

0.647**

(0.303)

TrainCost
0.573

(0.713)
3.36

(5.689)
0.573

(0.713)
4.887

(5.917)
0.573

(0.713)
3.041

(5.607)

Size
-0.314**

(0.176)
-0.745
(1.248)

-0.314**

(0.176)
-3.061**

(1.421)
-0.314**

(0.176)
-2.052*

(1.337)

Age
-0.042
(0.039)

0.159
(0.312)

-0.042
(0.039)

0.047
(0.336)

-0.042
(0.039)

0.161
(0.309)

PlantType
0.218

(0.369)
-3.442
(2.885)

0.218
(0.369)

-2.335
(3.073)

0.218
(0.369)

-2.955
(2.86)

F-Val 1.613 4.421 1.613 1.907 1.613 4.67

R² 0.075 0.182 0.075 0.087 0.075 0.206

Adj R² 0.033 0.145 0.033 0.046 0.033 0.166

Heteroscedasticity
Adjustment

No Yes No No No Yes

Industry dummies are included in all estimation models.  Standard errors are shown in parentheses.  Significant one-sided * at p <  0.10; ** at p

< 0.05; and *** at p < 0.01.  Sobel Mediation test p = 0.09 and Goodman Mediation test p = 0.08 (one-sided p-values).
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