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Appendix A

Delays under Packet Discrimination

Under outcome NN, both CPs receive the same priority on both ISPs.  Thus,  and w wCY NN CG NN N NCY NN CG NN{ } { } { } { }
= = − −
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Under outcome NY, both CPs receive the same priority on C and Y receives higher priority on D.  Thus,
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Under outcome , both CPs receive the same priority on  and  receives higher priority on . Thus, { } = { } =
{ } { } , { } = { } { } { } , and { } = { } . 

 

Under outcome , both CPs receive the same priority on both ISPs. Thus, { } = { } = { } { }  and { } ={ } = { } { } . 

 

Under outcome ,  receives higher priority on  and both CPs receive the same priority on . Thus, { } = { } , { } =
{ } { } { } , and { } = { } = { } { } . 

 

Under outcome ,  receives higher priority on both ISPs. Thus, { } = { } , { } = { } { } { } , 

{ } = { } , and { } = { } { } { } . 

 

Under outcome ,  receives higher priority on  and  receives higher priority on . Thus, { } = { } , { } =
{ } { } { } , { } = { } { } { } , and { } = { } . 

 

Under outcome ,  receives higher priority on  and both CPs receive the same priority on . Thus, { } = { } , { } =
{ } { } { } , and { } = { } = { } { } . 

 
Under outcome ,  receives higher priority on  and both CPs receive the same priority on . Thus, { } =

{ } { } { } , { } = { } , and { } = { } = { } { } . 

 
Under outcome ,  receives higher priority on  and  receives higher priority on . Thus, { } = { } { } { } , 

{ } = { } , { } = { } , and { } = { } { } { } . 

 

Under outcome ,  receives higher priority on both ISPs. Thus, { } = { } { } { } , { } = { } , 

{ } = { } { } { } , and { } = { } . 

 
Under outcome ,  receives higher priority on  and both CPs receive the same priority on . Thus, { } =

{ } { } { } , { } = { } , and { } = { } = { } { } . 

 

Under outcome , both CPs receive the same priority for both ISPs. Thus, { } = { } = { } { }  and { } ={ } = { } { } . 

 
Under outcome , both CPs receive the same priority on  and  receives higher priority on . Thus, { } = { } =

{ } { } , { } = { } , and { } = { } { } { } . 

 
Under outcome , both CPs receive the same priority on  and  receives higher priority on . Thus, { } = { } =

{ } { } , { } = { } { } { } , and { } = { } . 

 

Under outcome , both CPs receive the same priority for both ISPs. Thus, { } = { } = { } { }  and { } ={ } = { } { } . 
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Appendix B 

CPs’ Incentive Compatibility Constraints 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 
Under outcome , CPs’ incentive compatibility constraints are { } ≥ { }, { }, { } and { } ≥ { }, { }, { }. 
 

Appendix C 

Proof of Lemma 1:  The Symmetric Equilibrium Case 
 
Consumers have four choices of ISP-CP combinations: , , , and . Consumer demands for these four ISP-CP combinations can 
be derived by analyzing the curves of indifferent consumers. There are six curves of indifferent consumers based on the pairwise comparisons 
among the four ISP-CP combinations. For a given outcome , where , =  (Neither CP pays),  (Only  pays),  (Only  pays), and  
(Both CPs pay), these six curves of indifferent consumers can be characterized by four points { }, { }, { }, and { }: consumers 
located on = { } are indifferent between  and ; consumers located on = { } are indifferent between  and ; consumers 
located on = { } are indifferent between  and ; consumers located on = { } are indifferent between  and ; consumers 

located on the line that goes through points { }, { }  and { }, { }  are indifferent between  and ; and consumers located on 

the line that goes through points { }, { }  and { }, { }  are indifferent between  and . 
 

Comparing consumers’ utility functions for the corresponding pairs of ISP-CP combinations yields { } = + { } { } , { } =+ { } { } , { } = + + { } { } , and { } = + + { } { } . Considering symmetric 
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equilibrium with = , we have { } = + { } { }  and { } = + { } { } . We observe that the sign of { } −{ } is the same as the sign of { } − { }. In particular, { } = { } if and only if { } = { }. 
 
Each outcome  is determined by the ISPs’ pricing decisions and the corresponding content providers’ delivery service choices. We use 
indicator functions { }, { }, { } and { }, which take values of 0 or 1, to represent whether content providers  and  would pay 
for preferential delivery on ISPs  and . To be consistent with the four ISP-CP combinations on the unit square, we denote outcome  by 

the matrix 
{ } { }{ } { } . We introduce two types of actions (horizontal and vertical flips) to explore the connections among the 16 

outcomes: 
 
Horizontal Flip: Decisions of  and  are simultaneously interchanged on ISPs  and . Specifically, horizontal flip changes outcome  

dictated by 
{ } { }{ } { }  to outcome ’ ’ dictated by 

{ } { }{ } { } , where ’ = ,, if	 =if	 =,, if	 =if	 =  and ’ = ,, if	 =if	 =,, if	 =if	 = . 

 
Vertical Flip: Decisions of  and  are simultaneously interchanged across ISPs  and . Specifically, vertical flip changes outcome  

dictated by 
{ } { }{ } { }  to outcome  dictated by 

{ } { }{ } { } . 

 
Among the 16 outcomes, some outcomes permute amongst themselves when horizontal flip or vertical flip is applied and therefore can be 
grouped together into four invariant classes: (a) outcomes , , , and ; (b) outcomes	  and ; (c) outcomes  and ; (d) 
outcomes , , , , , , , and . In the following discussion, we give precise description of the changes to the indifferent 
customers when horizontal flip or vertical flip is applied to an outcome. 

 
Applying Horizontal Flip: The decisions of  on the two ISPs are interchanged with the decisions of  in a given outcome. Horizontal flip 

changes outcome  dictated by 
{ } { }{ } { }  to outcome ’ ’ dictated by 

{ } { }{ } { } . That is we have { } = { }, { } ={ }, { } = { }, and { } = { }. When the decisions in outcome  are changed to ’ ’, the decisions of  on  and  and the 
decisions of  on  and  are interchanged. The queuing priorities are interchanged on ISPs  and . This simultaneously interchanges the 
waiting times and market demand on  and  according to the new queuing priorities. We note that fees for all customers are equal so the 
redistribution is dependent solely on waiting times. Interchanging waiting times on ISPs  and  yields { } = { }, { } =

{ } , { } = { } , and { } = { } . This gives { } + { } = + { } { } + + { } { } = +{ } { } + − { } { } = 1, which implies { } = 1 − { }. Similarly, we have { } = 1 − { }, { } = { }, 
and { } = { }. We note that the positions of these curves of indifferent consumers relative to the line of = 	 or =  remain the 

same according to the decisions of  and . 
 
Applying Vertical Flip: The decisions of  and  on  are interchanged with their decisions on  in a given outcome. Vertical flip changes 

outcome  dictated by 
{ } { }{ } { }  to outcome  dictated by 

{ } { }{ } { } . That is we have { } = { } , { } = { } , { } = { }, and { } = { }. When the decisions in outcome  are changed to , the decisions of  and  on  are swapped with 
the decisions of  and  on . The queuing priorities are interchanged on ISPs  and . This simultaneously interchanges the waiting times 
and market demand on ISPs  and  according to the new queuing priorities. We note that fees for all customers are equal so the redistribution 
is dependent solely on waiting times. Interchanging waiting times on ISPs  and  yields { } = { }, { } = { }, { } ={ } , and { } = { } . This gives { } = + { } { } = + { } { } = { } . Similarly, { } = { } . We 

also have { } + { } = + { } { } + + { } { } = − { } { } + + { } { } = 1, which implies { } = 1 − { }. Similarly, { } = 1 − { }. 
 
Next we apply the above results of horizontal and vertical flips to each of the classes (a) through (d) to characterize the demand distribution 
under each outcome. 
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(Class a) Outcomes , , , and  
 
Under outcomes ,	 , , and , all customers have equal queuing priorities. Therefore applying horizontal flip or vertical flip to 
these outcomes will not change the queuing priorities. Hence the indifferent consumers remain unchanged when horizontal flip or vertical 
flip is applied. 
 
From horizontal flip relations, we have { } = 1 − { }, { } = 1 − { }, { } = 1 − { }, { } = 1 − { }, { } =1 − { } , { } = 1 − { } , { } = 1 − { } , and { } = 1 − { } . That is { } = { } = { } = { } =  and { } = { } = { } = { } = . From vertical flip relations, we have { } = 1 − { }, { } = 1 − { }, { } = 1 −{ } , { } = 1 − { } , { } = 1 − { } , { } = 1 − { } , { } = 1 − { } , { } = 1 − { } . That is { } ={ } = { } = { } =  and { } = { } = { } = { } = . 

 
Therefore, as shown in Figure C1, the market demand for , , , and  are equal under outcomes , , , and . That is { } = { } = { } = { } = , { } = { } = { } = { } = , { } = { } = { } ={ } = , and { } = { } = { } = { } = . 

 
Figure C1. Demand Distribution of Class a (outcomes , , , and ) 
 

(Class b) Outcomes  and  
 
Under outcome , only  pays for preferential delivery on both ISPs. Under outcome , only  pays for preferential delivery on both 
ISPs. Thus, { } − { } > 0, { } − { } > 0, { } − { } < 0, and { } − { } < 0. 
 

Vertical flip does not change the decisions of  and  on  and  in outcomes  and . Therefore we have { } = { } > , { } =1 − { } 	⟹	 { } = , { } = 1 − { } 	⟹	 { } = , { } = { } < , { } = 1 − { } 	⟹	 { } = , and { } =1 − { } 	⟹	 { } = . Moreover, horizontal flip applied to outcome  gives outcome  and vice versa. This gives { } = 1 −{ } = { } = 1 − { }. Thus, we simplify the notations to { } = { } = { } >  and { } = { } = { } < . Therefore, 

as shown in Figure C2, the demands for , , , and  in outcomes  and  are related such that { } = { } = { } ={ } = { }  and { } = { } = { } = { } = { } . In other words, ISPs  and  have the same market share, i.e., { } = { } = { } = { } = . Within each ISP, the paying CP gets more customers than the non-paying CP, i.e., { } ={ } = { } = { } > > { } = { } = { } = { }. 

1 2⁄  

1 2⁄
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Outcome  Outcome  
 
Figure C2. Demand Distribution of Class b (outcomes  and ) 

 

(Class c) Outcomes  and  
 
Under outcome , only  pays for preferential delivery on  and only  pays for preferential delivery on . Under outcome , only  
pays for preferential delivery on  and only  pays for preferential delivery on . Thus { } − { } > 0, { } − { } < 0, { } − { } < 0, and { } − { } > 0. Therefore we have { } > > { } and { } < < { }. Since the sign of { } − { } is the same as the sign of { } − { } for any outcome , we have { } > { }, and { } < { }. 
 
Observe that both horizontal flip and vertical flip applied to outcome  gives outcome  and vice versa. Through the connection of 
horizontal flip, we have { } = 1 − { }, { } = 1 − { }, { } = { }, and { } = { }. Through the connection of vertical 
flip, we have { } = { }, { } = { }, { } = 1 − { }, and { } = 1 − { }. Combining the two set of equalities gives { } = 1 − { } , { } = 1 − { } , { } = 1 − { } , and { } = 1 − { } . Since { } > { }  and { } < { } , the 

last set of equalities says that { } > > { } and { } < < { }. This says that the indifferent consumers { } and { } (as 

well as { } and { }) are symmetrically positioned on either side of = . Likewise, { } and { } (as well as { } and { }) 
are symmetrically positioned on either side of = . Therefore the demands for , , , and  in outcomes  and  are related 

such that { } = { } = { } = { } and { } = { } = { } = { }. 
 

As shown in Figure C3, ISPs  and  have the same market share, i.e., { } = { } = { } = { } = . Within each ISP, the paying 

CP gets more customers than the non-paying CP, i.e., { } = { } = { } = { } > > { } = { } = { } ={ }. 
 

  

1 2⁄  

1 2⁄
{ } 1 2⁄{ }

1 2⁄
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Outcome  Outcome  
 
Figure C3.  Demand Distribution of Class c (outcomes  and )

 
 

(Class d) Outcomes , , , , , , , and  
 
Based on CPs’ delivery service choices in outcomes , , , , , , , and , we know that { } − { } = { } −{ } = 0 , { } − { } = { } − { } = 0 , { } − { } > 0 , { } − { } < 0 , { } − { } > 0 , 

and { } − { } < 0. Therefore we have { } = { } = , { } = { } = , { } > > { }, and { } > > { }. 
Since the sign of { } − { } is the same as the sign of { } − { } for any outcome  , we have { } < { } and { } > { }. 
Likewise, we have { } > { } and  { } < { }. 
 
 
Successive applications of horizontal flip and vertical flip connect outcomes  , NG, , and  as follows: 
 

Outcome	 	 				Horizontal Flip				 	Outcome	  

Vertical Flip	↑|↓																																																														↑|↓	Vertical Flip 

Outcome	 	 				Horizontal Flip 			 	Outcome	  
 

Through horizontal flip, we have  { } = 1 − { } = , { } = 1 − { } < , { } = { } , { } = { } , { } = 1 −{ } < , { } = 1 − { } = , { } = { }, and { } = { }. Through vertical flip, we have  { } = { } > , { } ={ } = , { } = 1 − { }, { } = 1 − { }, { } = { } < , { } = { } = , { } = 1 − { }, and { } = 1 −{ } . Therefore the demand for , , , and  in outcomes , , , and  are related such that { } = { } ={ } = { } , { } = { } = { } = { } , { } = { } = { } = { } , and { } = { } ={ } = { }. 
 
The demand analysis for outcomes , , , and  is the same as that in outcomes , , , and  since both CPs receive the 
same queuing priority when they both pay for preferential delivery. Therefore, the demand for , , , and  in outcomes , , 

, and  are related such that { } = { } = { } = { }, { } = { } = { } = { }, { } = { } ={ } = { }, and { } = { } = { } = { }. 
 
If  and  make identical decisions on any ISP (  or ), consumers on that ISP will receive the same queuing priority. For example, under 
outcomes NG and BG, indifferent consumers of all four ISP-CP combinations are the same, which leads to identical demand distribution for 

, , , and . That is { } = { }, { } = { }, { } = { }, and { } = { }. By the same arguments 
above, we obtain the pairings with identical demand distribution for , , , and : outcomes  and , outcomes  and , and 
outcomes  and . 

1 2⁄{ }
{ }

1 2⁄  { }

{ }

 

1 2⁄
{ }

{ }

1 2⁄{ }

{ }
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As shown in Figure C4, outcomes in class d reveal particularly interesting demand patterns. For example, in outcome BG, although both CPs 
pay for preferential delivery on ISP ,  gets fewer consumers than  from ISP , i.e., { } > { }. 
 

Outcomes  and  Outcomes  and  

Outcomes  and  Outcomes  and  
 
Figure C4.  Demand Distribution of Class d (outcomes , , , , , , , and ) 

 
Summarizing the above analysis for the symmetric equilibrium case, we conclude that the 16 outcomes can be grouped into four classes, 
within which all outcomes are invariant under horizontal and vertical flips with similar consumer demand patterns. 

 

Appendix D 

Proof of Lemma 2:  The Symmetric Equilibrium Case  
 
We derive the possible symmetric equilibria in the packet discrimination regime by the following steps: step 1, prove that all outcomes 
involving only  pays for priority delivery are infeasible; step 2, derive properties of the equilibrium fixed fee ; step 3, eliminate dominated 
outcomes. 

Step 1: Prove that all outcomes involving only  pays for priority delivery are infeasible 
 
In step 1, we show that there is no feasible  for any outcome involving only  pays. Therefore such outcomes ( , , , , , , 
and ) cannot be an equilibrium. Since some outcomes are infeasible for similar reasons, we group them together. 

1 2⁄  

1 2⁄  

{ }
{ } 1 2⁄

1 2⁄

{ }
{ }

{ }

1 2⁄  

1 2⁄

{ }
{ }

{ }

1 2⁄
1 2⁄

{ }
{ }

{ }
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Outcomes  and  
 
Here we focus on showing that there is no feasible  for outcome , as the analysis for outcome  is similar. For outcomes  to be 
feasible, all the CPs’ incentive compatibility constraints need to be satisfied: (1)	 { } − { } ≥ 0 ; (2)	 { } − { } ≥ 0 ; (3)	 { } − { } ≥ 0; (4)	 { } − { } ≥ 0; (5)	 { } − { } ≥ 0; and (6)	 { } − { } ≥ 0. 
 

Inequality (2) is − { } 	 +	 { } − { } − { } + 	 { } ≥ 0 . Since { } + { } >  and { } +{ } = , inequality (2) can be reduced to ≤	 { } { } ⁄{ } . 

 

Inequality (5) is { } 	 + 	 { } − { } + { } − { } ≥ 0 . Since { } = , { } + { } = , and 

{ } + { } < , inequality (5) can be reduced to 	 ≥ 	 ⁄ { } { }⁄ . 

 

We know that − { } − { } = { } + { } − , { } > , and ≥ . Thus we have { } { } ⁄{ } <⁄ { } { }⁄ . Therefore (2) and (5) are inconsistent. Hence there is no feasible  for outcome . 

Outcomes  and  
 

Outcomes  and  are infeasible for similar reasons. Outcome  is not feasible since the following incentive compatibility constraints 
are inconsistent: (1)	 { } − { } ≥ 0 and (2)	 { } − { } ≥ 0. 
 

Inequality (1) can be reduced to ≤ { } { } { } { }{ } { } . Note that we have { } + { } − { } − { } ={ } + { } − + − { } − { } . Since { } + { } − = − { } − { } , we have { } + { } −{ } − { } = 2 { } + { } − = 2 − { } − { } . Thus inequality (1) can be simplified to ≤⁄ { } { }{ } { } ⁄ . 

 

Inequality (2) can be reduced to ≥	 ⁄ { } { }⁄ 	 { } . Note that we have { } + { } + { } + { } = 1. But { } <
{ }. Thus we have { } { } > − { }. Therefore ≥	 ⁄ { } { }⁄ 	 { } > ⁄ { } { }{ } { } ⁄ . 

 

In addition, we know ≥ . Thus we have 
⁄ { } { }⁄ 	 { } > ⁄ { } { }{ } { } ⁄ ≥ ⁄ { } { }{ } { } ⁄ . Therefore 

inequalities (1) and (2) are inconsistent. Hence outcome  is infeasible. 

Outcomes  and  
 

Outcomes  and  are infeasible for similar reasons. Outcome  is feasible provided { } − { } ≥ 0, i.e., − { } +{ } + { } − ≥ 0. Note that { } + { } = . This gives − { } ≥ 0. Since { } > , we have ≤ 	0. 

Hence there is no feasible  for outcome . 

Outcome  
 
Outcome  is not feasible since the following incentive compatibility constraints are inconsistent: (1)	 { } − { } ≥ 0  and (2)	 { } − { } ≥ 0. 
 

Inequality (1) is { } − { } − +	 { } − { } 	≥ 	0. Note that { } + { } = . Thus we have { } −{ } − = − { } − { } = −2 { } < 0. Therefore inequality (1) can be reduced to ≤	 − { }{ } . Inequality (2) can 

be reduced to 	 ≥ 	 1 − 4 { } . 
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Recall that { } = { } , { } = { } , and { } + { } = . Thus inequality (1) may be re-written as ≤ 1 −
{ }  and inequality (2) may be re-written as ≥ 4 { } 1 − { } . Since ≤  and 4 { } > 1, inequality (1) implies 

that ≤	 1 − { } <  but inequality (2) implies that ≥ 4 { } 1 − { } > . Therefore inequalities (1) and (2) are 

inconsistent and there is no feasible  for outcome . 
 
To summarize the above, there is no feasible  for outcomes , , , , , , and , and therefore, they cannot be an equilibrium. 

 

Step 2: Derive properties of the equilibrium fixed fee  
 
In step 2, we derive properties of the equilibrium fixed fee . Here we first discuss some properties for all 16 outcomes and thus the subscript 

 is omitted in this discussion. Under the assumption of full market coverage, the profit maximizing fixed fee  is such that the consumers 
of all four ISP-CP combinations ( , , , and ) with the lowest net utility will get zero net utility. 
 
We now define the global utility function ( , ) for the entire market [0,1] × [0,1]. First recall the definition of the demand distribution of 
each ISP-CP combinations characterized by the utility functions. 
 = {( , ) ∈ [0,1] × [0,1];	 ( , ) ≥ max{ ( , ), ( , ), ( , )	}	} = {( , ) ∈ [0,1] × [0,1];	 ( , ) ≥ max{ ( , ), ( , ), ( , )}	} = {( , ) ∈ [0,1] × [0,1];	 ( , ) ≥ max{ ( , ), ( , ), ( , )}	} = {( , ) ∈ [0,1] × [0,1];	 ( , ) ≥ max{ ( , ), ( , ), ( , )}	} 
 
Note that each of the following inequalities reduces to regions on [0,1] × [0,1] dictated by the indifference customers between mutual pairs 
of ISP-CP combinations: 
 ( , ) − ( , ) ≥ 0 ⟺ ≥  ( , ) − ( , ) ≥ 0 ⟺ ≥  ( , ) − ( , ) ≥ 0 ⟺ ≥  ( , ) − ( , ) ≥ 0 ⟺ ≥  ( , ) − ( , ) ≥ 0 ⟺ ≥ ( ) ( , ) − ( , ) ≥ 0 ⟺ ≥ ( ) 
 
Then the demand distributions can be written in terms of the indifference customers as follows: 
 = {( , ) ∈ [0,1] × [0,1]; 	 ≤ , ≤ , ≤ ( )	} = {( , ) ∈ [0,1] × [0,1]; 	 ≤ , ≥ , ≥ ( )	} = {( , ) ∈ [0,1] × [0,1]; 	 ≥ , ≤ , ≤ ( )	} = {( , ) ∈ [0,1] × [0,1]; 	 ≥ , ≥ , ≥ ( )	} 
 
Define the global utility function ( , ) over the entire market [0,1] × [0,1]: 
 

( , ) = ( , ),( , ), if	( , ) ∈if	( , ) ∈( , ),( , ), if	( , ) ∈if	( , ) ∈  

 
By definition of the demand regions , , , and , the global utility function gives the maximal utility value for the consumer  ( , ) according to its choice of ISP-CP combination. We also note that ( , ) is a continuous function over the set [0,1] × [0,1]. Indeed, 
first note that the functions ( , ), ( , ), ( , ), and ( , ) are linear functions in ( , ) and thus are all continuous. Since ( , ) is piecewise defined over demand regions , , , and , we only need to check that ( , ) is continuous at each point 
on the boundaries between mutual pairs of the demand regions , , , and . We check each boundary: 
 

• Between  and , the boundary is along the line =  on which = . 
• Between  and , the boundary is along the line =  on which = . 
• Between  and , the boundary is along the line = ( ) on which = . 
• Between  and , the boundary is along the line =  on which = . 
• Between  and , the boundary is along the line =  on which = . 
• Between  and , the boundary is along the line = ( ) on which = . 
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Since corresponding utility functions all matches along the boundaries between mutual pairs of the demand regions , , , and , 
the global utility function ( , ) is continuous over the entire set [0,1] × [0,1]. 
 
The global utility function ( , ) is a continuous function over the closed and bounded set [0,1] × [0,1]. Therefore ( , ) attains its 
maximum and minimum at some points in the set [0,1] × [0,1]. Under the assumption of full market coverage, the optimal fixed fees the 
ISPs charge consumers are such that the minimum of ( , ) equal to zero. In other words, the optimal fixed fee is the maximum fee such 
that all consumers get nonnegative utility. 
 
Since ( , ) is piecewise defined by linear functions, it has no critical points in the interior of each demand regions , , , and 

. Therefore we only need to analyze the value of ( , ) along each mutual boundaries to capture the minimum of ( , ). Before we 
analyze the boundaries between , , , and , we recall that the demand distributions split into the three geometric types (i) =

 and = ; (ii) <  and < ; and (iii) >  and > . 
 
The feasible outcomes , , , , and  are of type (i), where the demand regions are all rectangular in shape. The feasible 
outcomes  and  are of type (ii), which have exactly two rectangles, and two pentagonal regions sharing a boundary along = ( ). 
And finally, the feasible outcomes  and  are of type (iii), which have exactly two rectangles, and two pentagonal regions sharing a 
boundary along = ( ). 
 
We organize the analysis into two cases (A): ≤ and ≤  and (B): ≥  and ≥ . Cases (A) and (B) overlaps in those of 
type (i) here the diagonal boundary on = ( ) or = ( ) collapses to the point of intersection of these lines. 

Case (A): ≤  and ≤  
 
There are five boundaries including a segment on = ( ). 
 
(A1) Boundary between  and . This boundary is along the horizontal line =  and is the line segment joining (0, ) and the point ( , ). Since =  on this boundary, along the boundary we may write for 0 ≤ ≤ , ( , ) = ( , ) = − − −− , or ( , ) = ( , ) = − − (1 − ) − − . In either formula, we see that on this boundary ( , ) is a 
decreasing function of . Therefore ( , ) minimizes at ( , ) on the boundary between  and . 
 
(A2) Boundary between  and . This boundary is along the horizontal line =  and is the line segment joining ( , ) and the 
point (1, ). Since =  on this boundary, along the boundary we may write for ≤ ≤ 1, ( , ) = ( , ) = − (1 −) − − − , or ( , ) = ( , ) = − (1 − ) − (1 − ) − − . In either formula, we see that on this 
boundary ( , ) is a increasing function of . Therefore ( , ) minimizes at ( , ) on the boundary between  and . 
 
(A3) Boundary between  and . This boundary is along the vertical line =  and is the line segment joining ( , 0) and the point ( , ). Since =  on this boundary, along the boundary we may write for 0 ≤ ≤ , ( , ) = ( , ) = − − −− , or ( , ) = ( , ) = − (1 − ) − − − . In either formula, we see that on this boundary ( , ) is a 
decreasing function of . Therefore ( , ) minimizes at ( , ) on the boundary between  and . 
 
(A4) Boundary between  and . This boundary is along the vertical line =  and is the line segment joining ( , ) and the point ( , 1). Since =  on this boundary, along the boundary we may write for ≤ ≤ 1, ( , ) = ( , ) = − − (1 −) − − , or ( , ) = ( , ) = − (1 − ) − (1 − ) − − . In either formula, we see that on this boundary ( , ) is a increasing function of . Therefore ( , ) minimizes at ( , ) on the boundary between  and . 
 
(A5) Boundary between  and . This boundary is along the line = ( ) and is the line segment joining ( , ) and the point ( , ). We parameterize the directed line segment as follows: For 0 ≤ ≤ 1, = (1 − ) +  and = (1 − ) + . On this 
boundary the utility function  is a function of the parameter . Since =  on this boundary, along the boundary we may write for 0 ≤ ≤ 1 , ( ) = ((1 − ) + , (1 − ) + ) = − [(1 − ) + ] − [1 − (1 − ) − ] − − = +( − ) − − (1 − ) + ( − ) − − , or ( ) = ((1 − ) + , (1 − ) + ) = ( ) − [1 − (1 −) − ] − [(1 − ) + ] − − = ( ) − (1 − ) + ( − ) − + ( − ) − − . If =  

and =  then ( ) is a constant not dependent on . However, in general we note that the slope of = ( ) is given by = , i.e., ( − ) = ( − ). Thus the values of ( ) reduces to the constant: ( ) = − − (1 − ) − −  or ( ) = −(1 − ) − − − . From the analysis above, we could see that ( , ) minimizes on the points along the boundary on the line = ( ). In particular, ( , ) minimizes at ( , ) or ( , ) with the same value. 

Case (B): ≥ and ≥  
 
There are five boundaries including a segment on = ( ). 
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(B1) Boundary between  and . This boundary is along the horizontal line =  and is the line segment joining (0, ) and the point ( , ). Since =  on this boundary, along the boundary we may write for 0 ≤ ≤ , ( , ) = ( , ) = − − −− , or ( , ) = ( , ) = − − (1 − ) − − . In either formula, we see that on this boundary ( , ) is a 
decreasing function of . Therefore ( , ) minimizes at ( , ) on the boundary between  and . 
 
(B2) Boundary between  and . This boundary is along the horizontal line =  and is the line segment joining ( , ) and the 
point (1, ). Since =  on this boundary, along the boundary we may write for ≤ ≤ 1, ( , ) = ( , ) = − (1 −) − − − , or ( , ) = ( , ) = − (1 − ) − (1 − ) − − . In either formula, we see that on this 
boundary ( , ) is a increasing function of . Therefore ( , ) minimizes at ( , ) on the boundary between  and . 
 
(B3) Boundary between  and . This boundary is along the vertical line =  and is the line segment joining ( , 0) and the point ( , ). Since =  on this boundary, along the boundary we may write for 0 ≤ ≤ , ( , ) = ( , ) = − − −− , or ( , ) = ( , ) = − (1 − ) − − − . In either formula, we see that on this boundary ( , ) is a 
decreasing function of . Therefore ( , ) minimizes at ( , ) on the boundary between  and . 
 
(B4) Boundary between  and . This boundary is along the vertical line =  and is the line segment joining ( , ) and the point ( , 1). Since =  on this boundary, along the boundary we may write for ≤ ≤ 1, ( , ) = ( , ) = − − (1 −) − − , or ( , ) = ( , ) = − (1 − ) − (1 − ) − − . In either formula, we see that on this boundary ( , ) is a increasing function of . Therefore ( , ) minimizes at ( , ) on the boundary between  and . 
 
(B5) Boundary between  and . This boundary is along the line = ( ) and is the line segment joining ( , ) and the point ( , ). We parameterize the directed line segment as follows: For 0 ≤ ≤ 1, = (1 − ) +  and = (1 − ) + . On this 
boundary the utility function  is a function of the parameter . Since =  on this boundary, along the boundary we may write for 0 ≤ ≤ 1 , ( ) = ((1 − ) + , (1 − ) + ) = − [1 − (1 − ) − ] − [1 − (1 − ) − ] − − =+ ( − ) − (1 − ) − (1 − ) + ( − ) − − , or ( ) = ((1 − ) + , (1 − ) + ) = −[(1 − ) + ] − [(1 − ) + ] − − = − + ( − ) − + ( − ) − − . If =  and =  then ( ) is a constant not dependent on . However, in general we note that the slope of = ( ) is given by: − = , i.e., ( − ) = ( − ). Thus the values of ( ) reduces to the constant: ( ) = − (1 − ) − (1 − ) − −  or ( ) =− − − − . From the analysis above, we could see that ( , ) minimizes on the points along the boundary on the line = ( ). In particular, ( , ) minimizes at ( , ) or ( , ) with the same value. 
 
Maximum Fees for Case A: The maximum fees occur when the minimum of the global utility function is zero. Therefore from the formulas 
in (A5), the maximum fees are given by: − − (1 − ) − − = 0 and − (1 − ) − − − = 0. This gives 

the maximum fees: = − 1 − − −  and = − − 1 − − . 

 
Maximum Fees for Case B: The maximum fees occur when the minimum of the global utility function is zero. Therefore from the formulas 
in (B5), the maximum fees are given by: − (1 − ) − (1 − ) − − = 0 and − − − − = 0. This 

gives the maximum fees: = − − −  and = − 1 − − 1 − − . 

 
We next solve for the optimal fixed fee for feasible outcomes in symmetric equilibrium when = = . 
 

Optimal  for outcomes , , , and : All waiting times are the same and = = = = . Using the formulas for 

maximum fees above, we get { } = { } = { } = { } = − − − ⁄ . 

 

Optimal  for outcome : In this outcome, { } = { } =  and { } = { } < . We have four formulas for F which must be 

consistent. We verify that those in Case A and Case B both reduces to the following formula for : { } = − 1 − { } − −
{ } . 

 
Optimal  for outcomes  and : These outcomes have the same demand distributions and so the same indifferent customers and 

waiting times. We use the formulas for Case B for these outcomes: { } = { } = − 1 − { } − 1 − { } − { } . 

Optimal  for outcomes  and : These outcomes have the same demand distributions and so the same indifferent customers and 

waiting times. We use the formulas for Case A for these outcomes: { } = { } = − 1 − { } − { } − { } . 

 
  



Guo et al./Competition among Providers on the Net Neutrality Debate 
 
 

 
 

 MIS Quarterly Vol. 41 No. 2─Appendices/June 2017   A13 

Step 3: Eliminate Dominated Outcomes 
 
From step 1, we know that outcomes , , , , , , and  can be eliminated from the equilibrium analysis due to no feasible 

. 
 

Next, we further eliminate other dominated outcomes by comparing CPs’ profits. Recall that: { } = { } = { }; { } = { } and 

{ } = { } + { }; { } = { } + { } and { } = { }; and { } = { } = { } + { }. For outcomes , , , and 

, we have { } = { } = { } = { } and equal demand distributions amongst all ISP-CP combinations. Comparing pairs of these 
outcomes yields { } < { }, { } < { }, and { } < { }. Therefore, outcomes , , and  are dominated and can be 
eliminated. 
 
Next, we compare outcomes , , , and . We know { } = { } = { } = { } , and the following demand distributions 
amongst all ISP-CP combinations: { } = { } = { } = { } , { } = { } = { } = { } , { } ={ } = { } = { }, and { } = { } = { } = { }. Recall that { } = { } + { } { }, { } ={ } + { } { } + { } { }, { } = { } + { } { } + { } { }, { } = { } + { } { }, { } = { } + { } { } + { } ,  { } = { } + { } { } + { } { },  { } = { } +{ } { } + { } { }, and { } = { } + { } { } + { } . Comparing pairs of these outcomes yields { } <{ } and { } < { }. Therefore, outcomes  and  are dominated and can be eliminated from the equilibrium analysis. 
 
Therefore, after eliminating all the dominated outcomes, we conclude that outcomes , , , and  as the only four possible symmetric 
equilibria. 
 

Appendix E 

Proofs of Lemma 1 and Lemma 2:  The Asymmetric Equilibrium Case   
 
We derive the possible asymmetric equilibria in the packet discrimination regime by the following steps: in step 1, we characterize consumers 
demand patterns; in step 2, we derive properties of the equilibrium fixed fees  and ; in step 3, we eliminate dominated outcomes and 
derive the only possible asymmetric equilibria. Without loss of generality, we assume = + ∆ , where ∆ ≥ 0. 

Step 1:  Characterize Consumer Demand Patterns in Asymmetric Equilibrium 
 
Similar to the analysis of symmetric equilibrium, we compare consumers’ utility functions for the corresponding pairs of ISP-CP 

combinations and derive { } = + { } { } , { } = + { } { } , { } = − + { } { } , and { } =− + { } { } . Note that the sign of { } − { } is the same as the sign of { } − { }. 
 
Each outcome  is determined by the ISPs’ pricing decisions and the corresponding content providers’ delivery service choices. As in the 

symmetric case, we denote outcome  by the matrix 
{ } { }{ } { } . When considering asymmetric equilibrium, horizontal flip still applies 

to permuting the outcomes while vertical flip no longer applies since ≥ . 
 
Among the 16 outcomes, we still have four invariant classes under horizontal flip: (a) outcomes , , , and ; (b) outcomes  and 

; (c) outcomes  and ; (d) outcomes , , , , , , , and . Next we apply the horizontal flip to each of the classes 
(a) through (d) to characterize the demand distribution under each outcome. 

(Class a) Outcomes , , , and  
 
Under outcomes , , , and , all customers have equal queuing priorities. Therefore applying horizontal flip to these outcomes 
will not change the queuing priorities. Hence the indifferent customers remain unchanged when horizontal flip is applied. 
 
From horizontal flip relations, we have { } = 1 − { }, { } = 1 − { }, { } = 1 − { }, { } = 1 − { }, { } =1 − { } , { } = 1 − { } , { } = 1 − { } , and { } = 1 − { } . That is { } = { } = { } = { } =  and { } = { } = { } = { } = . 
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Since the sign of { } − { } is the same as the sign of { } − { } for any outcome  and =  under outcomes , , , and 

, we have = . Next we prove that = ≤  by contradiction. First, suppose < − . Then <  since ≥ . This 

implies >  which gives > . But we also have = − + ( )
. Therefore − + ( ) < −

 which gives − < 0. A contradiction arises. Therefore, we must have ≥ − . Second, suppose > . Then <
 which gives < . But we have ≥ . Therefore = + + ( ) < . A contradiction arises. Therefore we must 

have ≤ . 

 
Therefore, as shown in Figure E1, the market demands for  and  are equal, and the market demands of  and  are equal under 

outcomes , , , and . That is { } = { } = { } = { } = { } = { } = { } = { } <  and { } = { } = { } = { } = { } = { } = { } = { } > . 

 

 
Figure E1.  Demand Distribution of Class a (outcomes , , , and ) 

 

(Class b) Outcomes  and  
 
Based on symmetry under horizontal flip, we can obtain the demand distribution of  by reflecting the demand distribution of outcome  

through the line = . Thus we may focus on deriving the demand distribution of outcome . 

 

We know from the analysis of symmetric equilibrium that when = , { } = { } <  and { } = { } = . When > , we 

know that { } = + { } { } , { } = + { } { } , { } = − + { } { } , and { } = −+ { } { } . Since only  pays for preferential delivery on both ISPs, { } − { } < 0, and { } − { } < 0. 

Thus, { } <  and { } < . 

 

Furthermore, { } − { } = { } { } { } { } = { } { }{ } { } { } −
{ } { }{ } { } { } > 0 since { } > { } and { } + { } > { } + { }. Therefore, we have { } <{ } < .  Since the sign of { } − { }  is the same as the sign of { } − { }  for any outcome , we have { } < { } . 

Furthermore, we know that { } <  since { } + { } > { } + { }. 
 

Therefore, as shown in Figure E2, { } < { } < , { } < { }, and { } < . Based on horizontal flip, we know that { } =1 − { }, { } = 1 − { }, { } = { }, and { } = { }. Therefore, { } > { } > , { } < { }, and { } < . 

 

 1 2⁄
{ }
1 2⁄  
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Outcome  Outcome  
 
Figure E2. Demand Distribution of Class b (outcomes  and ) 

(Class c) Outcomes  and  
 
Based on symmetry under horizontal flip, we can obtain the demand distribution of  by reflecting the demand distribution of outcome  

through the line = . Thus we may focus on deriving the demand distribution of outcome . 

 
Under outcome , only  pays for preferential delivery on  and only  pays for preferential delivery on . Thus, { } − { } > 0 

and { } − { } < 0. Therefore we have { } > > { }. Since the sign of { } − { } is the same as the sign of { } −{ } for any outcome , we have { } > { }. When > , we know that { } + { } > { } + { }. Therefore, we 

have { } < . 

 

Therefore, as shown in Figure E3, { } < < { }, { } < { }, and { } < . Based on horizontal flip, we know that { } =1 − { }, { } = 1 − { }, { } = { }, and { } = { }. Therefore, { } < < { }, { } < { }, and { } < . 

 

Outcome  Outcome  
 
Figure E3.  Demand Distribution of Class c (outcomes  and ) 
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(Class d) Outcomes , , , , , , , and  
 
The demand analysis for outcomes , , , and  is the same as that in outcomes , , , and  since both CPs receive the 
same queuing priority when they both pay for preferential delivery. Based on symmetry under horizontal flip, we can obtain the demand 

distribution of  by reflecting the demand distribution of outcome  through the line = . Similarly, we can obtain the demand 

distribution of  by reflecting the demand distribution of outcome  through the line = . Thus, we may focus on deriving the demand 

distribution of outcomes  and . 
 
In outcome , neither CP pays on  and only  pays on . Thus, { } − { } = 0 and { } − { } < 0. Therefore, we have { } < { } = . Since the sign of { } − { } is the same as the sign of { } − { } for any outcome , we have { } < { }. 
When > , we know that { } + { } > { } + { }. Therefore, we have { } < . 

 

Therefore, as shown in Figure E4, { } < { } = , { } < { }, and { } < . Based on horizontal flip, we know that { } =1 − { }, { } = 1 − { }, { } = { }, and { } = { }. Therefore, { } < { } = , { } < { }, and { } < . 

 
Similarly, in outcome , only  pays on  and neither CP pays on . Thus, { } − { } < 0  and { } − { } = 0 . 

Therefore, we have { } < { } = . Since the sign of { } − { } is the same as the sign of { } − { } for any outcome , we 

have { } < { } . From the analysis of symmetric equilibria, we know that when = , { } < . Thus, when > , have { } < . 

 

Therefore, as shown in Figure E4, { } < { } = , { } < { }, and { } < . Based on horizontal flip, we know that { } =1 − { }, { } = 1 − { }, { } = { }, and { } = { }. Therefore, { } = < { }, { } < { }, and { } < . 

 
The demand patterns for outcomes , , , and  are identical to that for outcomes , , , and  respectively. 
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Outcomes  and  Outcomes  and  

Outcomes  and  Outcomes  and  
 

Figure E4.  Demand Distribution of Class d (Outcomes , , , , , , , and ) 
 

Step 2:  Derive Properties of the Equilibrium Fixed Fees  and  in Asymmetric Equilibrium 
 
As shown in step 2 in Appendix D, the equilibrium fixed fees  and  take two different forms: in Case (A) when ≤  and ≤ , 

we have = − 1 − − −  and = − − 1 − − ; in Case (B) when ≥  and ≥ , we have = − − −  and = − 1 − − 1 − − . Among the 16 

outcomes, outcomes , , , and  are contained in both Case (A) and Case (B); outcomes , , , , , and  are 
contained in Case (A); outcomes , , , , , and  are contained in Case (B). 
 
Based on the results in step 1, we know the demand patterns and waiting times are related across different outcomes by horizontal flip. 
Therefore, we can compare the equilibrium fixed fees  and  for the following groups of outcomes. 

 

Outcomes , , , and  
 

For outcomes , , , and , we have { } = { } = { } = { } = { } = { } = { } = { } =  and { } = { } = { } = { } = { } = { } = { } = { } < . In addition, we know that { } = { } = { } ={ } = { } = { } = { } = { }  and { } = { } = { } = { } = { } = { } = { } ={ }. Therefore, we know that { } = { } = { } = { } and { } = { } = { } = { }. 

1 2⁄  

1 2⁄  

{ }
{ }
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Outcomes , , , and  
 

For outcomes , , , and , we have { } = { } = { } = { } = , { } = 1 − { } = 1 − { } = { } , 	 { } = { } = { } = { }, and 	 { } = { } = { } = { }. In addition, we know that { } = { } = { } ={ }  and { } = { } = { } = { } . Therefore, we know that { } = { } = { } = { }  and { } ={ } = { } = { }. 
 

Outcomes , , , and  
 

For outcomes , , , and , we have { } = { } = { } = { } = , { } = 1 − { } = 1 − { } = { } , 	 { } = { } = { } = { }, and 	 { } = { } = { } = { }. In addition, we know that { } = { } = { } ={ }  and { } = { } = { } = { } . Therefore, we know that { } = { } = { } = { }  and { } ={ } = { } = { }. 
Outcomes  and  
 
For outcomes  and , we have { } = 1 − { }, { } = 1 − { }, 	 { } = { }, and 	 { } = { }. In addition, we know 
that { } = { } and { } = { }. Therefore, we know that { } = { } and { } = { }. 
 

Step 3:  Eliminate Dominated and Infeasible Outcomes in Asymmetric Equilibrium 
 
Next we compare groups of outcomes and eliminate the dominated outcomes from further analysis of asymmetric equilibrium. 

Outcomes , , and  are dominated 
 
In outcome , the ISPs’ profit functions are { } = { } +	 { } { }  and { } = { } +	 { } { } . In 

outcome , the ISPs’ profit functions are { } = { } +	 { } { } and { } = { } +	 { } { } + { } . 

In outcome , the ISPs’ profit functions are { } = { } +	 { } { } + { }  and { } = { } +	 { } { } . In outcome , the ISPs’ profit functions are { } = { } +	 { } { } + { }  and { } ={ } +	 { } { } + { } . Based on the results in step 1, we know that { } = { } = { } = { } ={ } = { } = { } = { }  and { } = { } = { } = { } = { } = { } = { } = { } . 
Based on the results in step 2, we know that { } = { } = { } = { } and { } = { } = { } = { }. 
 
Comparing pairs of these outcomes yields { } < { }, { } < { }, and { } < { }. Therefore, outcomes , , and  
are dominated and can be eliminated from further analysis of asymmetric equilibrium. 

Outcome  is dominated by outcome  
 
The feasible region of { }  and { }  is determined by the six incentive compatibility constraints: { } − { } ≥ 0 , { } −{ } ≥ 0, { } − { } ≥ 0, { } − { } ≥ 0 , { } − { } ≥ 0, and { } − { } ≥ 0. These constraints respectively 

imply { } + 	 { } − { } −	 { } + { } { } + { } − { } { } ≥ 0 , { } +	 { } − −{ } { } ≥ 0, { } + 	 { } − { } +	 { } + { } { } − { } { } ≥ 0, { } + 	 { } − +{ } { } ≥ 0 , { } + 	 { } − + { } { } ≥ 0 , and { } + 	 { } − { } −	 { } +{ } { } + { } { } ≥ 0. 
 
The feasible region of { }  and { }  is determined by the six incentive compatibility constraints: { } − { } ≥ 0 , { } −{ } ≥ 0, { } − { } ≥ 0, { } − { } ≥ 0, { } − { } ≥ 0, and { } − { } ≥ 0. These constraints respectively 

imply { } + 	 { } − + { } { } ≥ 0 , { } +	 { } − + { } { } ≥ 0 , { } + 	 { } −{ } −	 { } + { } { } + { } { } ≥ 0 , { } + 	 { } − { } −	 { } + { } { } +
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{ } − { } { } ≥ 0 , { } + 	 { } − − { } { } ≥ 0 , and { } + 	 { } − { } −	 { } + { } { } − { } { } ≥ 0. 
 
The feasible region of { } and { } contains the feasible region of { } and { } since ≥  and the demand patterns across 
outcomes are related by horizontal flip. Based on the results in step 2, we know that { } = { } and { } = { }. In outcome , 

the ISPs’ profit functions are { } = { } +	 { } { }  and { } = { } +	 { } { } + { } { } . In 

outcome , the ISPs’ profit functions are { } = { } +	 { } { }  and { } = { } +	 { } { } +{ } { }. Therefore, outcome  is dominated by outcome  since { } ≤ { }. 
Outcomes  is dominated by outcome  
 
The feasible region of { }  and { }  is determined by the six incentive compatibility constraints: { } − { } ≥ 0 , { } −{ } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , and { } − { } ≥ 0 . These constraints respectively 

imply { } + 	 { } − − { } { } + { } − { } { } ≥ 0 , { } +	 { } − + { } −{ } { } − { } { } ≥ 0 , { } + 	 { } − { } −	 { } − { } { } − { } { } ≥ 0 , { } +	 { } − { } −	 { } − { } { } ≥ 0, { } + 	 { } − + { } − { } { } + { } { } ≥ 0, 

and { } + 	 { } − { } −	 { } − { } { } + { } { } ≥ 0. 
 
The feasible region of { }  and { }  is determined by the six incentive compatibility constraints: { } − { } ≥ 0 , { } −{ } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , and { } − { } ≥ 0 . These constraints respectively 

imply { } +	 { } − { } −	 { } − { } { } ≥ 0 , { } + 	 { } − + { } − { } { } +{ } { } ≥ 0 , { } + 	 { } − { } −	 { } − { } { } + { } { } ≥ 0 , { } +	 { } −{ } −	 { } − { } { } + { } − { } { } ≥ 0 , { } +	 { } − + { } − { } { } −{ } { } ≥ 0, and { } + 	 { } − { } −	 { } − { } { } − { } { } ≥ 0. 
 
The feasible region of { } and { } contains the feasible region of { } and { } since ≥  and the demand patterns across 
outcomes are related by horizontal flip. Based on the results in step 2, we know that { } = { } and { } = { }. In outcome , 

the ISPs’ profit functions are { } = { } +	 { } { } + { }  and { } = { } +	 { } { } +{ } { }. In outcome , the ISPs’ profit functions are { } = { } +	 { } { } + { }  and { } = { } +	 { } { } + { } { }. Therefore, outcome  is dominated by outcome  since { } ≤ { }. 
 
 
Outcomes  is dominated by outcome  
 
In outcome , the ISPs’ profit functions are { } = { } +	 { } { }  and { } = { } +	 { } { } +{ } { } . In outcome , the ISPs’ profit functions are { } = { } +	 { } { } + { }  and { } ={ } +	 { } { } + { } { }. Based on the results in step 1, we know that { } = { } and { } = { }. 
Based on the results in step 2, we know that { } = { }. Therefore, outcome  is dominated by outcome  since { } ≤ { }. 
 

Outcomes  is dominated by outcome  
 
The feasible region of { }  and { }  is determined by the six incentive compatibility constraints: { } − { } ≥ 0 , { } −{ } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , and { } − { } ≥ 0 . These constraints respectively 

imply { } +	 { } − − { } { } ≥ 0 , { } + 	 { } − { } −	 { } + { } − { } { } +{ } { } ≥ 0, { } + 	 { } − { } −	 { } − { } { } + { } { } ≥ 0, { } + 	 { } − +{ } { } ≥ 0 , { } +	 { } − { } −	 { } + { } { } ≥ 0 , and { } +	 { } − { } −	 { } + { } { } + { } { } ≥ 0. 
 
The feasible region of { }  and { }  is determined by the six incentive compatibility constraints: { } − { } ≥ 0 , { } −{ } ≥ 0, { } − { } ≥ 0, { } − { } ≥ 0, { } − { } ≥ 0, and { } − { } ≥ 0. These constraints respectively 

imply { } + 	 { } − + { } { } ≥ 0 , { } + 	 { } − { } −	 { } + { } { } ≥ 0 , 
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{ } + 	 { } − { } −	 { } + { } { } + { } { } ≥ 0 , { } + 	 { } − − { } { } ≥ 0 , { } + 	 { } − { } −	 { } + { } − { } { } + { } { } ≥ 0 , and { } + 	 { } −{ } −	 { } − { } { } + { } { } ≥ 0. 
 
The feasible region of { } and { } contains the feasible region of { } and { } since ≥  and the demand patterns across 
outcomes are related by horizontal flip. Based on the results in step 2, we know that { } = { } and { } = { }. In outcome , 

the ISPs’ profit functions are { } = { } +	 { } { } + { } { }  and { } = { } +	 { } { } . In 

outcome , the ISPs’ profit functions are { } = { } +	 { } { } + { } { }  and { } = { } +	 { } { }. Therefore, outcome  is dominated by outcome  since { } ≤ { }. 
 

Outcomes  is dominated by outcome  
 
The feasible region of { }  and { }  is determined by the six incentive compatibility constraints: { } − { } ≥ 0 , { } −{ } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , and { } − { } ≥ 0 . These constraints respectively 

imply { } +	 { } − − { } { } + { } − { } { } ≥ 0 , { } + 	 { } − + { } −{ } { } − { } { } ≥ 0 , { } + 	 { } − { } −	 { } − { } { } − { } { } ≥ 0 , { } +	 { } − + { } { } + { } − { } { } ≥ 0, { } + 	 { } − { } −	 { } − { } { } ≥ 0, 

and { } +	 { } − { } −	 { } + { } { } − { } { } ≥ 0. 
 
The feasible region of { }  and { }  is determined by the six incentive compatibility constraints: { } − { } ≥ 0 , { } −{ } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , { } − { } ≥ 0 , and { } − { } ≥ 0 . These constraints respectively 

imply { } + 	 { } − + { } { } + { } − { } { } ≥ 0 , { } + 	 { } − { } −	 { } −{ } { } ≥ 0 , { } +	 { } − { } −	 { } + { } { } − { } { } ≥ 0 , { } +	 { } − −{ } { } + { } − { } { } ≥ 0 , { } + 	 { } − + { } − { } { } − { } { } ≥ 0 , and { } +	 { } − { } −	 { } − { } { } − { } { } ≥ 0. 
 
The feasible region of { } and { } contains the feasible region of { } and { } since ≥  and the demand patterns across 
outcomes are related by horizontal flip. Based on the results in step 2, we know that { } = { } and { } = { }. In outcome , 

the ISPs’ profit functions are { } = { } +	 { } { } + { } { }  and { } = { } +	 { } { } +{ } . In outcome , the ISPs’ profit functions are { } = { } +	 { } { } + { } { } and { } = { } +	 { } { } + { } . Therefore, outcome  is dominated by outcome  since { } ≤ { }. 
 

Outcomes  is dominated by outcome  
 
In outcome , the ISPs’ profit functions are { } = { } +	 { } { } + { } { }  and { } = { } +	 { } { } . In outcome , the ISPs’ profit functions are { } = { } +	 { } { } + { } { }  and { } ={ } +	 { } { } + { } . Based on the results in step 1, we know that { } = { } and { } = { }. Based 
on the results in step 2, we know that { } = { }. Therefore, outcome  is dominated by outcome  since { } ≤ { }. 
 

Outcomes  and  are infeasible 
 
Here we focus on showing that there is no feasible  for outcome , as the analysis for outcome  is similar. For outcomes  to be 
feasible, all the CPs’ incentive compatibility constraints need to be satisfied: (1)	 { } − { } ≥ 0 ; (2)	 { } − { } ≥ 0 ; (3)	 { } − { } ≥ 0; (4)	 { } − { } ≥ 0; (5)	 { } − { } ≥ 0; (6)	 { } − { } ≥ 0.  
 

Inequality (3) is { } + 	 { } − { } −	 { } + { } − { } 	≥ 	0. Since { } + 	 { } = , inequality 

(3) can be reduced to ≥ { }{ } + { } 	 { }{ } . 
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Inequality (6) is { } + 	 { } − { } − { } + { } − { } 	≥ 	0. Since { } + { } = , inequality 

(6) can be reduced to ≤ { }{ } + { } 	 { }{ } . 

 

Based on the result in step 1, we have − { } − { } = { } + { } − > 0. This gives 
{ } 	 { }{ } > 0 and 

{ } 	 { }{ } < 0. Next we show that { }{ } > { }{ } . We first note that { } = { }  and { } = { } . Thus, 

{ }{ } > { }{ } ⟺ { }{ } > { }{ } 		⟺		 { }{ } > { }{ } . 
 

Since { } > { } and { } > { }, we have { }{ } > 1 > { }{ } . Thus, we also have { }{ } > { }{ }. Then (3) and (6) 

implies that  and  are both negative. Therefore, outcome  is infeasible. 
 
Similarly, we can show that there is no feasible p for outcome . Therefore, both outcomes  and  are infeasible. 

 

Outcomes  is infeasible 
 
For outcomes  to be feasible, all the CPs’ incentive compatibility constraints need to be satisfied: (1)	 { } − { } ≥ 0; (2)	 { } −{ } ≥ 0; (3)	 { } − { } ≥ 0; (4)	 { } − { } ≥ 0; (5)	 { } − { } ≥ 0; (6)	 { } − { } ≥ 0. 
 

Inequality (3) is { } + 	 { } − { } −	 { } − { } − { } ≥ 0. Since { } + 	 { } = , inequality (3) 

can be reduced to { } + 	 { } − ≥ { } + { } . 

 

Inequality (6) is { } + 	 { } − { } − { } + { } + { } 	≥ 	0. Since { } + 	 { } = , inequality 

(6) can be reduced to { } + { } 	≥ − { } −	 { } . 

 

Based on the result in step 1, we have { } = { }, { } = { } and − { } −	 { } = { } +	 { } − . 

We also know that ≥ . Thus, { } + { } = { } + { } ≥ { } + { } , which implies { } − { } + { } − { } ≤ 0. 
 
Since  pays for priority delivery on both  and , we know that { } > { } and { } > { }, i.e., { } − { } > 0 

and { } − { } > 0. Thus, (3) and (6) imply that either  or  is negative. Therefore, outcome  is infeasible. 
 
Therefore, after eliminating all the dominated and infeasible outcomes, we conclude that outcomes , , , and  as the only four 
possible asymmetric equilibria. 

 

Appendix F 

Proof of Lemma 3   
 
From Lemma 2, we know that outcomes , , , and  as the only four possible equilibria. Here we conduct symmetric equilibrium 
analysis ( = =  and = = ) and derive the ISPs’ equilibrium pricing strategies and the corresponding equilibrium outcomes in 
the packet discrimination regime in the following two steps. 

Step 1: Solve for the Equilibrium Fixed Fee  and Preferential Delivery Fee  for the Candidate Outcomes 
 
In step 1, we solve for the equilibrium fixed fee  and preferential delivery fee  for the candidate outcomes one by one. Among the four 
candidate equilibria, outcome  and outcome  are symmetric. Thus, we focus on outcomes , , and  in this analysis. 
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Outcome  
 
The preferential delivery fee  for outcome  is determined by the following two CPs’ incentive compatibility constraints: { } ≥ { } 
yields { } ≤ 	 ⁄ { } { }⁄ { } ; { } ≥ { } yields { } ≤ 	 ⁄ { } { }⁄ . Therefore, { }∗ = { } , where { } =min ⁄ { } { }⁄ { } , ⁄ { } { }⁄ . In addition, we know from the results in Lemma 2 that { }∗ = − − − ⁄ . 

Outcome  
 
The preferential delivery fee  for outcome  is determined by the following three CPs’ incentive compatibility constraints: { } ≥{ }  yields { } ≤ { } { } { } { }{ } ; { } ≥ { }  yields { } 	≥ 	 ⁄ { } { }⁄ 	 { } ; { } ≥ { }  yields 

{ } ≤ 	 { } { } ⁄{ } { } ⁄ . Thus, there exists a feasible { }  if and only if 
⁄ { } { }⁄ 	 { } ≤min { } { } { } { }{ } , { } { } ⁄{ } { } ⁄ , which can be reduced to ≥ { } { } ⁄⁄ 	 { }  and ⁄ { } { }⁄ 	 { } ≤ { } { } { } { }{ } .  When these feasible conditions hold, we obtain { }∗ = min { } , { } , 

where { } = { } { } { } { }{ }  and { } = { } { } ⁄{ } { } ⁄ . 

 
We know that in a symmetric equilibrium, { } = { } , i.e., { } + { } { } + { } { } = { } +{ } { } + { } . Thus, { }∗ = { } { } { } { }∗

{ } { } { } { }. Note that since { } + { } > { } and { }∗ ≥ 0, we 

have { } + { } > { } + { }. 
Outcome  
 
The preferential delivery fee  for outcome  is determined by the following three CPs’ incentive compatibility constraints: { } ≥{ }  yields { } ≥ { } { } { } { }{ } ; { } ≥ { }  yields { } ≥ ⁄ { } { }⁄ ; { } ≥ { }  yields 

{ } ≤ { } { } ⁄{ } { } ; { } ≥ { } yields { } ≤ { } { } { } { }{ } { } { } . 

Let { } = max { } { } { } { }{ } , ⁄ { } { }⁄  and { } =min { } { } ⁄{ } { } , { } { } { } { }{ } { } { } . Thus, there exists a feasible { } if and only if { } ≤ { } . Here we note 

that { } ≥ ⁄ { } { }⁄  and { } ≤ { } { } ⁄{ } { } . So we have { }{ } ≥ ⁄ { } { }⁄{ } { } ⁄{ } { } = { } { }⁄ > 1. When these 

feasible conditions hold, we obtain { }∗ = { } . In addition, we know from the results in step 2 in the proof of Lemma 2 that { }∗ =− 1 − { } − − { } ⁄ . 

 
We note here that the solution of price  in outcomes , , and  form three non-overlapping intervals. Specifically, we have { } ≤{ } ≤ ⁄ { } { }⁄ 	 { } ≤ { } ≤ min { } , { } ≤ { } ≤ { } ≤ { } . The non-overlapping solution reflects 

the fact that incentive criteria for content providers in outcomes , , and  are mutually exclusive. Observe also that the endpoints of 
the non-overlapping intervals are given by constant multiples of the revenue rates  and . 

Step 2: Compare the Candidate Outcomes and Derive Equilibrium Outcomes 
 
In step 2, we compare the ISPs’ profits in outcomes , , and  to determine the equilibrium outcomes. Since ISPs  and  have the 
same profit level in a given outcome, we simplify the notations to { } = { } = { } , { } = { } = { } , and { } ={ } = { }. Outcome  is the equilibrium provided all the following inequalities are satisfied: { } ≤ { } , { } ≥ { }, and { } ≥ { }. These reduces to the following inequalities: ≥ { }{ } ≡ , ≥ { } { } { }{ } { } + { } { } { } { }⁄{ } { } ≡

, and ≥ { }	 { } { } + 	 { } { }{ } { } ≡ + . Outcome  (or outcome ) is the equilibrium provided all the following 

inequalities are satisfied: ≥ { } { } ⁄⁄ 	 { } ≡ , { } > { }, and { } ≥ { }. These reduces to the following inequalities: 
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≥ , < , and ≤ { } { } { }{ } − { } { } { } { }{ } ≡ . When the above market conditions are not satisfied, 

outcome  is the equilibrium. Summarizing the above analysis yields Lemma 3. 

 

Appendix G 

Proof of Proposition 1  

Since the net neutrality regime is essentially equivalent to outcome , where neither CP pays for preferential delivery even though they 

have the option to do so. Based on the results from Lemma 2, we know that in the net neutrality regime, = = { }∗ = { }∗
. In 

addition, there are four possible equilibria in the packet discrimination regime, i.e., = = { }∗ = { }∗ { }∗ { } , or == { }∗ = { } { }∗ + { }∗ = { }∗ = { } { }∗ + { }∗ , or = = { }∗ = { }∗ { }∗
. From the results in step 

3 in the proof of Lemma 2, we know { }∗ ≥ { }∗ . Therefore, we get = ≥ { }∗ ≥ { }∗ = = . 

Appendix H 

Proof of Proposition 2   
 

In the net neutrality regime, we know that = { }∗ = 	 . In the packet discrimination regime, there are three possible equilibria – 

outcomes , , and . The corresponding profit for content provider  is: { }∗ = { } + { } − { }∗ , { }∗ =
{ } + { } − { }∗ , and { }∗ = 	 { }∗

. Next we focus on comparing { }∗  and { }∗ . 

Recall that { }∗ = { } , where { } = min { } { } ⁄{ } { } , { } { } { } { }{ } { } { } . If { } = { } { } ⁄{ } { } , 

then { }∗ = { } + { } − { } { } ⁄{ } { } = = { }∗ . If { } = { } { } { } { }{ } { } { } , then 

{ }∗ = { } + { } − { } { } { } { }{ } { } { } = { } { } { }{ } { } { } ≥ = { }∗ . Thus, CP ’s 

profit in outcome  is higher than that in outcome  if and only if { } { } { } { }{ } { } { } < { } { } ⁄{ } { } , which can be 

simplified to { } + { } { } > { } { } { }. 
 

From the proof of Lemma 1, we know { } + { } = 1 − { }, { } = { }, and − { } = { } − { } . This gives: { } = 1 − { } 1 − { } − { } − { } − { } = 1 − { } 1 − { } − { } − { } . 

 

Substituting these equations into the { } + { } { } > { } { } { } yields 1 − { } { } > 1 − { } −1 − { } 1 − { } + { } − { } . Rearranging this inequality gives > { } { }{ } { } { } . Therefore, if the ratio of 

 is higher than a threshold, { }∗ > { }∗ . 

 
In general, comparisons of { }∗ , { }∗ , and { }∗  show that CP ’s profit may be lower, unchanged or higher in the packet 
discrimination regime than that in the net neutrality regime. Specifically, it is lower under equilibrium BB, but is unchanged or higher under 
equilibrium , i.e., { }∗ ≥ { }∗ ≥ { }∗ . 
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Appendix I 

Proof of Proposition 3   
 

In the net neutrality regime, we know that = { }∗ = 	 . In the packet discrimination regime, there are three possible equilibria – 

outcomes , , and . The corresponding profit for content provider  is: { }∗ = { } , { }∗ = { } − { } { }∗ , 

and { }∗ = 	 { }∗
. We compare ’s profit in the three possible equilibria in the packet discrimination regime to its profit in the net 

neutrality regime one by one. We first note that { }∗ ≥ { }∗ . Furthermore, since { } ≤ , we get that { }∗ ≥ { }∗ . Lastly, since { }∗ ≤ { }∗ , { }∗ ≥ { } + { } − { } { }∗ ≥ { } + { } − { } { }∗ = { }∗ . 
 
Summarizing the above, we conclude that ’s profit is higher in the net neutrality regime than that in all three possible equilibria in the packet 
discrimination regime. Therefore, ≥ . 

 

Appendix J 

Proof of Proposition 4   
 

Substituting the equilibrium prices into the social welfare formula = + + + + ( , ) , we get that, in 

the net neutrality regime, = { } = − − ⁄ + ( )
. In the packet discrimination regime, there are three possible 

equilibria – outcomes , , and . The corresponding social welfare is:  { } = − − { } − − { } ⁄ + { } +1 − { } , { } = { } + ( ) + ( ) 2 − { } − { } − { } + { } + { } + { } − +
{ } − + { } + { } − { } + { } + { } − { } + − { } + { } − { } −+ 2 { } − { } − + 2 { } { } − { } , and { } = − − ⁄ + ( )

. 

 

We first note that { } = { }. Furthermore, since { } ≤ , we get that { } ≥ { }. Lastly, we compare { } and { }. 
Let ∆ = { } − { }. We can show that 

∆ ≥ 0 and ∆ = 0 at = . Therefore, { } ≥ { }. 
 
Summarizing the above, we conclude that social welfare is weakly higher in all three possible equilibria in the packet discrimination regime 
than that in the net neutrality regime. Therefore, ≥ . 

 

Appendix K 

Numerical Analysis of the Asymmetric Equilibrium   
 
In this appendix, we numerically explore the asymmetric equilibrium. There are eight parameters ( , , , , , , , and ) in our model. 
Note that not all the parameters need to be changed independent of the other parameters. For example, with respect to the parameters  and 

, what is important is not their absolute values but the utilization rate of the service queue, i.e., / , and hence we set = 0.5 and varied 
the value of  to achieve a wide range of utilization rate. Specifically, ∈ (0.5,5] in our numerical analysis, which resulted in a range for 
the utilization rate of [0.1,1). In addition, parameters , , , and  can theoretically vary within an infinite range and they all affect the 
consumer’s utility. Thus, one of these parameters can be kept fixed relative to the others and here we normalized = 1. We then conducted 
the numerical analysis on a wide range of the other three parameters ∈ [1,5], ∈ [0.5,3], and ∈ [0.5,3]. Finally, recent empirical 
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evidence1 shows that the revenue rates (measured by the average revenue per user, i.e., ARPU) vary widely2. Therefore, we chose a reasonable 
range of revenue rates ∈ (0,5] and ∈ (0,5]. In summary, the total number of exploration points for the entire parameter space was 
1,593,750, which generated 38.8 GB of data. We implemented this asymmetric equilibrium analysis in Mathematica 10 and ran the solution 
procedure on clusters hosted by the High Performance Computing facility at a university. The total running time for all the simulations was 
around 180 hours. 
 
Figure K1 shows the result of the symmetric equilibria for parameters = 3, = 2, = 1, = 1, = 0.5, and = 1. Results for other 
parameter values are qualitatively the same. These numerical results validate the analytical results (all the lemmas and propositions for the 
symmetric equilibrium) that we present in the paper. 
 

 
Figure K1.  Types of Symmetric Equilibria 
Notes: 

• The separating lines between the regions for different equilibria may shift based on different parameter values. 
• For symmetric ISPs (with the same capacity levels), outcome  – where both CPs pay ISP  and only  pays ISP  – 

is equivalent to outcome . Thus, a set of parameter values that result in outcome  can also (equivalently) result in 
outcome . Similarly, outcome  is equivalent to outcome . 

 
 
Next, we consider the asymmetric equilibria results with symmetric ISPs. As we show in Figure K2, the results show a somewhat more 
complex set of possible equilibrium outcomes. There are some regions which correspond to a single type of dominating outcomes (for 
example, the regions in green corresponding to the dominating equilibrium outcome , or similarly  if ≥ , or the region in blue 
corresponding to the outcome ), and there are others that correspond to regions where there are two possible types of equilibrium outcomes 
(e.g., the region in red corresponding to either outcome  or outcome ). 

 
 

                                                 
1 http://www.forbes.com/sites/tristanlouis/2013/08/31/how-much-is-a-user-worth/ 
2 The ARPU for four popular websites are $1.63 (Facebook), $1.53 (LinkedIn), $1.81 (Yahoo), and $10.09 (Google). 
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Figure K2.  Types of Pareto Frontiers for Asymmetric Equilibria 
Notes: 
• The separating lines between the regions for different equilibria may shift based on different parameter values. 
• For symmetric ISPs (with the same capacity levels), outcome  is equivalent to outcome . Similarly, outcome  is 

equivalent to outcome . 
 

To understand why we may have multiple possible types of asymmetric equilibrium outcomes for a certain combination of  and , it is 
instructive to look at the Pareto frontier of the asymmetric equilibria. Figure K3 shows two examples of the Pareto frontier results with 
different values of  and . 
 
In Figure K3, every point on the curve corresponds to the profit of ISP  (on the -axis) and the profit of ISP  (on the -axis), such that if 

 and  choose the corresponding ( , ) and ( , ) that results in these profits, such a strategy choice is not dominated by any other 
strategy in the strategy space of  and  forming a Pareto frontier. Thus, for a certain combination of  and , there may be multiple 
asymmetric strategy choices contained in the Pareto frontier. Consider the example on the left in Figure K3 (with = 3 and = 3), all 
such strategy choices result in the equilibrium outcome , i.e., both  and  pay both ISPs. However, in the example on the right in Figure 
K3 (with = 0.5 and = 4), for some strategy choices of  and , the equilibrium outcome is , but for other strategy choices, the 
equilibrium outcome is . 
 

 = 3 and = 3 
 = 0.5 and = 4 

 
Figure K3.  Examples of Pareto Frontier of Asymmetric Equilibria 

 

 or 
 

 

 

 or 
 

 or 

 or 
 

 only
 or 
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Note that under these asymmetric strategy choices, the profits of  and  are different, which means that one of them is engaging in predatory 
pricing, with the intent of getting higher profits. In real life, such an action will likely result in a retaliatory action from the other ISP, which 
is harmful to both firms in the long run. As Farrell (1987)3 showed, it is very easy for symmetric firms who can engage in asymmetric 
equilibria to signal their intent at a very little cost to the other firm (in the words of Farrell, by engaging in “cheap talk”) and thereby arrive 
at the mutually beneficial symmetric equilibrium. 
 
Furthermore, our numerical results show that the main findings for the symmetric equilibrium case still hold for the asymmetric equilibrium 
case. We have already shown analytically in Lemma 3 that ISP competition does not substitute for net neutrality regulation even considering 
the asymmetric equilibria. In addition, our numerical analysis for the asymmetric equilibria confirms that the dominant CP still sometimes 
benefits in the absence of net neutrality. While we cannot develop similar generalized “conditions” with numerical analysis, we find however 
that when the ratio of ⁄  is high and the ratio of ⁄  is high (in other words, when the conditions of Proposition 2 hold), CP  is better 
off under packet discrimination. 
 
The case is different however if the ISPs are asymmetric with respect to their capacities. In such situations, the asymmetric equilibrium is not 
just a theoretical exercise but can actually occur. We numerically explore the details of the asymmetric equilibria for asymmetric ISPs with 
different capacities in Appendix L. 
 

Appendix L 

Numerical Analysis of the Asymmetric ISPs   
 
In this appendix, we numerically explore the asymmetric equilibria for asymmetric ISPs with different capacities. Without loss of generality, 
we assume ≥ . 
 
As compared to the symmetric equilibrium or the asymmetric equilibrium with symmetric ISPs, the equilibrium outcomes with asymmetric 
ISPs is more complicated with more possible types of strategy choices (as shown in Figure L1). For example, for a certain combination of  
and , there can be three or even four outcomes that are part of the Pareto frontier, i.e.  and  can choose three or four different types of 
pricing strategies. 
  

                                                 
3 Farrell, J. 1987. “Cheap Talk, Coordination, and Entry,” RAND Journal of Economics (18:1), pp. 34-39. 
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Red “+”: , , or  ( , , or ) 
Green “ − ”: , , , or 
                   ( , , , or ) 
Orange “∗”: , , or  ( , , or ) 
Blue “⋅”:  only 
Pink “ ”: , , or  ( , , or ) 
Black “~”:  or  (  or ) 
 

  
Figure L1. Types of Pareto Frontiers for Asymmetric Equilibria with Asymmetric ISPs 
Notes: 
• Figure L1 is generated based on parameter values = 5, = 1, = 3, = 1, = 1, = 1, and = 0.5. 
• The separating lines between the regions for different equilibria may shift based on different parameter values. 
• Unlike the equilibria with symmetric ISPs, with asymmetric ISPs, the equilibrium outcomes  and  are not equivalent. 

Similarly, outcomes  and  are not equivalent for the asymmetric ISP case. 
 

Figure L1 shows that when  and  are somewhat comparable, the equilibrium outcome is . Also, when  is much greater than , the 
equilibrium outcome is either just  or it also includes the outcome  or  as part of the Pareto frontier. For intermediate values of  
and , the strategy choices for the two ISPs and the CPs get more varied. 
 
Figure L2 shows two examples of the Pareto frontier with two sets of  and  values ( = 3, = 3 and = 1, = 3). The Pareto 
frontier is no longer symmetric as for symmetric ISPs (Figure K3) because ISP  has a higher capacity than ISP . 
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Figure L2.  Examples of Pareto Frontier of Asymmetric Equilibria with Asymmetric ISPs
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Furthermore, just as shown in Appendix K, our numerical analysis for asymmetric ISPs show that the main findings for the symmetric ISP 
case still hold for the asymmetric ISP case. For example, our numerical analysis for asymmetric ISPs confirms that ISP competition does not 
substitute for net neutrality regulation even for ISPs with different capacity levels as in the symmetric ISP case (Lemma 3). In addition, the 
dominant CP still sometimes benefits in the absence of net neutrality. 
 


