

HEALTHCARE PREDICTIVE ANALYTICS FOR RISK PROFILING IN CHRONIC CARE: A BAYESIAN MULTITASK LEARNING APPROACH

Yu-Kai Lin

College of Business, Florida State University, Tallahassee, FL 32306 U.S.A. {ylin@business.fsu.edu}

Hsinchun Chen

Eller College of Management, University of Arizona, Tucson, A 895721 U.S.A. {hchen@eller.arizona.edu}

Randall A. Brown

Southern Arizona VA Health Care System, Tucson, AZ 85723 U.S.A. {Randall.Brown4@va.gov}

Shu-Hsing Li

College of Management, National Taiwan University, Taipei City 106, TAIWAN {shli@ntu.edu.tw}

Hung-Jen Yang

The Walter H. Shorenstein Asia-Pacific Research Center, Stanford University, Stanford, CA 94305 U.S.A. {berniejohan@gmail.com}

Appendix A

Bayesian Multitask Learning for Artificial Neural Networks

We have shown in the main text how to apply the proposed Bayesian Multitask Learning (BMTL) approach to a set of baseline logistic regression models. The BMTL approach is applicable to other baseline models as well. To demonstrate the generalizability of the BMTL approach, we describe how to apply BMTL to artificial neural networks (ANNs) in this appendix. In the interest of consistency and for ease of exposition, we reuse the notations in equations (1) to (7) in the main text whenever possible.

Consider a feed-forward ANN with one single hidden layer. A typical functional form of the ANN is

$$y_i^{(k)} = \text{logit}(F^{(k)}(x_i)), \quad i = 1...N, \quad k = 1...K$$
 (A1)

where

$$F^{(k)}(x_i) = \alpha_0^{(k)} + \sum_{h=1}^H \alpha_h^{(k)} \pi \left(\beta_{h0}^{(k)} + \sum_{j=1}^J \beta_{hj}^{(k)} x_{ij} \right)$$
(A2)

The π in (A2) is referred to as an activation function in the literature of ANNs and is often nonlinear. Two common choices for π are the logistic and the hyperbolic tangent functions. The $\alpha_0^{(k)}, \alpha_h^{(k)}, \beta_{h_0}^{(k)}$, and $\beta_{h_i}^{(k)}$ are task-specific parameters to be fitted. The $\alpha_0^{(k)}$ and $\beta_{h_0}^{(k)}$ are the biases

for the output and hidden nodes, and the $\alpha_h^{(k)}$ and $\beta_{hj}^{(k)}$ are the *weights* for the respective input units. To achieve BMTL, we set the following prior distributions for these parameters.

$$\alpha_0^{(k)}, \beta_{h0}^{(k)} \sim Cauchy(0, 10), \quad k = 1, \dots, K; \quad h = 1, \dots, H$$
 (A3)

$$\alpha_h \sim MVN(0, u_h^2 A_h), \quad h = 1, \dots, H$$
(A4)

$$\beta_{hj} \sim MVN(0, s_{hj}^2 B_{hj}), \quad h = 1, \dots, H; \quad j = 1, \dots, J$$
 (A5)

In (A4) and (A5), $\boldsymbol{\alpha}_{j} = \left[\boldsymbol{\alpha}_{j}^{(1)}, \boldsymbol{\alpha}_{j}^{(2)}, \dots, \boldsymbol{\alpha}_{j}^{(K)}\right]^{T}$ and $\boldsymbol{\beta}_{hj} = \left[\boldsymbol{\beta}_{hj}^{(1)}, \boldsymbol{\beta}_{hj}^{(2)}, \dots, \boldsymbol{\beta}_{hj}^{(K)}\right]^{T}$. At this point, it is straightforward to draw hyper prior distributions for u_{j} and s_{hj} as we did for r_{j} in (4) and (5). Similarly, A_{h} and B_{hj} will follow the same formulation as Σ_{j} in (6).

Appendix B

Robust Check for Evaluation 3 Using Different Decision Thresholds

STK			cted Risk ⁻ L-Logit)			ted Risk t-lasso)		Predicted Risk (UKPDS)	
(# of events = 828)		Low	High] [Low	High] [Low	High
Preventive treatment prescribed at/before <i>v_{0i}</i>	Yes	28	424	Yes	40	412	Yes	344	108
	No	69	307	No	88	288	No	278	98
AMI			cted Risk L-Logit)			ted Risk -lasso)	_	Predicted Risk (UKPDS)	
(# of events = 225)		Low	High] [Low	High] [Low	High
Preventive treatment prescribed at/before v _{0i}	Yes	85	76	Yes	88	75	Yes	65	96
	No	56	8	No	59	5	No	28	36
ARF		Predicted Risk (BMTL-Logit)			Predicted Risk (Logit-lasso)			Predicted Risk (UKPDS)	
(# of events = 571)	ſ	Low	High] [Low	High] [Low	High
Preventive treatment prescribed at/before v_{0i}	Yes	62	252	Yes	75	238	Yes	UKPDS does no predict ARF risks	
	No	84	174	No	100	158	No		

STK			cted Risk ⁻ L-Logit)			ted Risk t-lasso)	_	Predicted Risk (UKPDS)	
(# of events = 828)		Low	High		Low	High		Low	High
Preventive treatment prescribed at/before v _{0i}	Yes	208	244	Yes	205	247	Yes	436	16
	No	309	67	No	312	64	No	354	22
AMI			ted Risk L-Logit)			ted Risk -lasso)		Predicted Risk (UKPDS)	
(# of events = 225)		Low	High] [Low	High] [Low	High
Preventive treatment prescribed at/before v _{0i}	Yes	126	35	Yes	125	36	Yes	140	21
	No	63	1	No	63	1	No	60	4
ARE		Predicted Risk (BMTL-Logit)			Predicted Risk (Logit-lasso)			Predicted Risk (UKPDS)	
(# of events = 571)		Low	High		Low	High] [Low	High
Preventive treatment prescribed at/before v _{0i}	Yes	174	139	Yes	181	132	Yes	UKPDS	does not
	No	196	62	No	200	58	No	predict A	RF risks.

Figure B2. Summary of Results in Evaluation 3 Using 20% as the Cut-Off Value for High/Low Risks