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Appendix A 
 
Notation Table 
 

T Finite maintenance horizon time length 

g = 1, 2, …, G G types of data errors 

h = 1, 2, …, H H types of information queries ߣ୻,୥ Poisson arrival rate for type g data error ୕ߣ,୦ Poisson arrival rate for type h information query Γ(௧,௧ାଵ)௚  Amount of type g data errors from epoch t to epoch t+1 Q(௧,௧ାଵ)௛  Amount of type h query from epoch t to epoch t+1 ߁௚ Accumulated amount of type g data error 

S CDB system state ߚ௚→௛ Unit staleness cost of type g data error to type h query ܽ௞ Action take at the kth decision epoch 

I Check interval length ܥ௎ Fixed synchronization cost ܥௗ Business disruption cost 

S System state space ܵ(௧భ,௧మ) The change of system state from time t1 till time t2 ݀௧(ܵ) Decision rule at epoch t given system state S ߨ Maintenance policy ܶ[ܵ, ܵᇱ] Transition probability from state S to state Sᇱ ݀∗ Optimal decision rule 
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 ௞ Threshold for System Staleness Cost at decision epoch kߞ

௣ܶ State transition probability matrix 

 

Appendix B 

Important Derivations  

Derivation of Expected Interval Staleness Cost ۳ൣ۱(ܓ,ܓା૚)൧ 
 
Denoting the number of type h queries arriving during the time interval by ݊௛, which follows a Poisson distribution, and their arrival times 
by ݐ௡೓   ଵ, respectively, we haveݐ ,… ,௡೓ିଵݐ ,
൧(௞,௞ାଵ)ܥൣܧ  = ∑ ∑ ቄ׬ ݀൫ݐ௡೓൯௞ூାூ௞ூ ׬ ݀൫ݐ௡೓ିଵ൯௧೙೓௞ூ ׬	… ௧మ௞ூ(ଵݐ)݀ ∗ ൫ߣொ,௛൯௡೓ ∗ ݁ିఒ్,೓∗ூ ∗ ൣ∑ ∑ ]୻೒,(௞ூ,௧೔)∆ܧ ௛݂(∆Γ௚)]௚ீୀଵ௡೓௜ୀଵ ൧ቅஶ௡೓ୀଵு௛ୀଵ   

         (B-0) 
 

With a check interval of length I, the time window between the kth decision epoch and the k+1th epoch is (݇ܫ, ܫ݇ +   .… ,k= 0, 1, 2 ,(ܫ
 
In time interval (݇ܫ, ܫ݇ +  we assume that there are ݊௛ information queries for type h query (h=1, 2…, H). Because the arrivals of queries ,(ܫ
follow independent Poisson distribution, the time between two consecutive arrivals ݐ௜ −  ௜ିଵ follow i.i.d exponential distribution. Thus, basedݐ
on Assumption 1, the probability that type h query occurs ݊௛ times at time ݐଵ, ,ଶݐ … , ௡೓ݐ ∈ 	 ,ܫ݇) ܫ݇ +   :is (ܫ
 ܲ൫݊௛, ,ଵݐ ,ଶݐ … , ௡೓൯ݐ = ൫ߣொ,௛൯݁ିఒ్,೓∗௧భ ∗ ൫ߣொ,௛൯݁ିఒ్,೓∗(௧మି௧భ) ∗ … ∗ ൫୕ߣ,௛൯݁ିఒ్,೓∗ቀ௧೙೓ି௧೙೓షభቁ ∗ ݁ିఒ్,೓∗ቀூି௧೙೓ቁ = ൫ߣொ,௛൯௡೓ ∗ ݁ିఒ్,೓∗ூ  

(B-1) 
 
During the interval, the set of new data errors is denoted by ܵ(௞,௞ାଵ), ܵ(௞,௞ାଵ) = 	 (Γ(௞,௞ାଵ)ଵ , Γ(௞,௞ାଵ)ଶ , … , Γ(௞,௞ାଵ)௚ , … , Γ(௞,௞ାଵ)ீ ). 

 
The expected interval staleness cost is 
൧(௞,௞ାଵ)ܥൣܧ  = ෍ ෍ {න ݀൫ݐ௡೓൯௞ூାூ

௞ூ න ݀൫ݐ௡೓ିଵ൯௧೙೓௞ூ …	න ௧మ௞ூ(ଵݐ)݀ ∗ ௡೓(ொ,௛ߣ) ∗ ݁ିఒ్,೓∗ூஶ
௡೓ୀଵ

ு
௛ୀଵ ∗ ቎෍ ෍ ෍ …	 ෍ ௛݂(∆Γଵ, ∆Γଶ, … , ∆Γீ)ஶ

∆୻ಸୀ଴
ஶ

∆୻మୀ଴
ஶ

∆୻భୀ଴
݁ିఒ౳,భ(௧೔ି௞ூ)[ߣ୻,ଵ(ݐ௜ − ୻భ(Γଵ!)∆[(ܫ݇ ∗ …∗ ݁ିఒ౳,ಸ௧೔[ߣ୻,ீ(ݐ௜ − ୻ಸ(∆Γீ!)∆[(ܫ݇ 	௡೓

௜ୀଵ ቏} 
    (B-2) 

 
where ݐ௜ is the time when the ith type h query arrives. 
 
Based on Assumption 1, the G types of data errors occur independently, hence the joint probability distribution of (∆Γଵ, ∆Γଶ, … , ∆Γீ) is the 
product of the occurring probabilities of all G types of data error.  
 
Regarding the cost function ௛݂(∆Γଵ, ∆Γଶ, … , ∆Γீ), according to Assumption 2, each data error leads to business losses independently. Then, 
 ௛݂(∆Γଵ, ∆Γଶ, … , ∆Γீ) = ௛݂(∆Γଵ) + ௛݂(∆Γଶ) + ⋯+ ௛݂(∆Γீ) 

(B-3) 
 

 

Let ݐ௜ᇱ = ௜ݐ − ∑ then ,ܫ݇ ∑ …	∑ ௛݂(∆Γଵ, ∆Γଶ, … , ∆Γீ)ஶ∆୻ಸୀ଴ஶ∆୻మୀ଴ஶ∆୻భୀ଴ ௘షഊ౳,భ೟೔ᇲ(ఒ౳,భ௧೔ᇲ)∆౳భ(∆୻భ!) ∗ … ∗ ௘షഊ౳,ಸ೟೔ᇲ(ఒ౳,ಸ௧೔ᇲ)∆౳ಸ(∆୻ಸ!)  can be decomposed to (under 

the independent assumption) 
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∑ ௛݂(∆Γଵ)ஶ∆୻భୀ଴ ௘షഊ౳,భ೟೔ᇲ(ఒ౳,భ௧೔ᇲ)∆౳భ(∆୻భ!) + ⋯+	∑ ௛݂(∆Γீ)ஶ∆୻ಸୀ଴ ௘షഊ౳,ಸ೟೔ᇲ(ఒ౳,ಸ௧೔ᇲ)∆౳ಸ(∆୻ಸ!)      

(B-4) 
 

Each element in Eq. (B-4) is an expected value derived based on the distribution of ∆Γ௚.  
 

The above result can be rewritten as 
]୻భ∆ܧ  ௛݂(∆Γଵ)] + ]୻మ∆ܧ ௛݂(∆Γଶ)] + ⋯+ ]୻ಸ∆ܧ ௛݂(∆Γீ)] = ∑ ]୻೒,(௞ூ,௧೔)∆ܧ ௛݂(∆Γ௚)]௚ீୀଵ      

(B-5) 
 

This expected cost function depends on the length of the considered time interval. Specifically, during a time interval (݇ܫ,   ,(௜ݐ
 ∆Γ(௞ூ,௧೔)௚ ~Poisson൫ߣ୻,௚ ∗ ௜ݐ) −  ൯(ܫ݇

(B-6) 
 

Based on this result,  
൧(௞,௞ାଵ)ܥൣܧ  = ෍ ෍ {න ݀൫ݐ௡೓൯௞ூାூ

௞ூ න ݀൫ݐ௡೓ିଵ൯௧೙೓௞ூ …	න ௧మ௞ூ(ଵݐ)݀ ∗ ൫୕ߣ,௛൯௡೓ ∗ ݁ିఒ్,೓∗ூ ∗ ቎෍෍ܧ∆୻೒,(௧,௧೔)[ ௛݂(∆Γ௚)]ீ
௚ୀଵ

௡೓
௜ୀଵ ቏}ஶ

௡೓ୀଵ
ு
௛ୀଵ  

(B-7) 
 

Previous studies have assumed a linear form for the cost function (Dey 2006), so a special case here is to assume a linear form for ௛݂(∆Γ௚) ௛,௚ߚ= ∗ ∆Γ௚. Then 
]ܧ  ௛݂(∆Γ௚)] = ௛,௚ߚ ∗ ୻,௚ߣ ∗ ௜ݐ) −  (ܫ݇

                                         (B-8) 
 
The linear expression for ܥൣܧ(௞,௞ାଵ)൧ thus becomes  
൧(௞,௞ାଵ)ܥൣܧ  = ෍ ෍ {න ݀൫ݐ௡೓൯௞ூାூ

௞ூ න ݀൫ݐ௡೓ିଵ൯௧೙೓௞ூ …	න ௧మ௞ூ(ଵݐ)݀ ∗ ൫ߣொ,௛൯௡೓ ∗ ݁ିఒೂ,೓∗ூ ∗ [(෍ ௛,௚ߚ ∗ ୻,୥ீߣ
௚ୀଵ )෍(ݐ௜ − ௡೓(ܫ݇

௜ୀଵ ]}ஶ
௡೓ୀଵ

ு
௛ୀଵ  

     (B-9) 
 

Since (∑ ௛,௚ߚ ∗ ୻,୥௚ீୀଵߣ ) is not affected by the outside summation on h and ݊௛, we have 
൧(௞,௞ାଵ)ܥൣܧ  = ෍(෍ߚ௛,௚ ∗ ୻,୥ீߣ

௚ୀଵ )ு
௛ୀଵ ෍ ൫ߣொ,௛൯௡೓ஶ

௡೓ୀଵ ∗ ݁ିఒೂ,೓∗ூ
∗ ቐන ݀൫ݐ௡೓൯௞ூାூ

௞ூ න ݀൫ݐ௡೓ିଵ൯௧೙೓௞ூ …	න ௧మ௞ூ(ଵݐ)݀ ∗෍(ݐ௜ − ௡೓(ܫ݇
௜ୀଵ ቑ 

(B-10) 
 

Given that kI is a constant denoting the starting time of the interval, we can denote ݐ௜ᇱ = ௜ݐ −  .ܫ݇
൧(௞,௞ାଵ)ܥൣܧ  = ෍(෍ߚ௛,௚ ∗ ୻,୥ீߣ

௚ୀଵ )ு
௛ୀଵ ෍ ൫ߣொ,௛൯௡೓ஶ

௡೓ୀଵ ∗ ݁ିఒೂ,೓∗ூ ∗ ቐන ݀൫ݐ௡೓ᇱ + ൯ூܫ݇
଴ න ݀൫ݐ௡೓ିଵᇱ + ൯௧೙೓ᇲ଴ܫ݇ …	න ଵᇱݐ)݀ + ௧మᇲ଴(ܫ݇ ∗෍(ݐ௜ᇱ)௡೓

௜ୀଵ ቑ
= ෍(෍ߚ௛,௚ ∗ ୻,୥ீߣ

௚ୀଵ )ு
௛ୀଵ ෍ ൫ߣொ,௛൯௡೓ஶ

௡೓ୀଵ ∗ ݁ିఒೂ,೓∗ூ ∗ ቐන ௡೓ᇱூݐ݀
଴ න ௡೓ିଵᇱ௧೙೓ᇲ଴ݐ݀ …	න ଶᇱ௧యᇲ଴ݐ݀ න ଵᇱ௧మᇲ଴ݐ݀ ∗෍(ݐ௜ᇱ)௡೓

௜ୀଵ ቑ 

(B-11) 
 
According to Dey et al. (2006) 
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න ௡ூݐ݀
଴ න ௡ିଵ௧೙଴ݐ݀ …	න ଶ௧య଴ݐ݀ න ଵ௧మ଴ݐ݀ ∗ ൭෍ݐ௜௠௡

௜ୀଵ ൱ = ݉)௠ା௡ܫ + 1)(݊ − 1)!	 
                (B-12) 

 
Using the induction above,  
 න ௡೓ᇱூݐ݀

଴ න ௡೓ିଵᇱ௧೙೓ᇲ଴ݐ݀ …	න ଶᇱ௧యᇲ଴ݐ݀ න ଵᇱ௧మᇲ଴ݐ݀ ∗෍(ݐ௜ᇱ)௡೓
௜ୀଵ = ௡೓ାଵ2(݊௛ܫ − 1)! 

                   (B-13) 
൧(௧,௧ାூ)ܥൣܧ  = ෍ቌ෍ߚ௛,௚ ∗ ୻,௚ீߣ

௚ୀଵ ቍ ෍ ൫୕ߣ,௛൯௡೓ ∗ ݁ିఒ్,೓∗ூ ∗ ௡೓ାଵ2(݊௛ܫ − 1)!ஶ
௡೓ୀଵ

ு
௛ୀଵ  

          (B-14) 
 

Let ݆ = ݊௛ − 1, 
൧(௞,௞ାଵ)ܥൣܧ  = ෍ቌ෍ߚ௛,௚ ∗ ୻,௚ீߣ

௚ୀଵ ቍ ෍ ൫୕ߣ,௛൯௝ାଵ ∗ ݁ିఒ్,೓∗ூ ∗ ௝ାଶ2݆!ஶܫ
௡೓ୀଵ

ு
௛ୀଵ = 12෍ቌ෍ߚ௚ ∗ ୻,௚ீߣ

௚ୀଵ ቍ ∗ ଶ෍݁ିఒ్,೓∗ூܫ௛,୕ߣ ∗ ൫୕ߣ,௛ ∗ ൯௝݆!ஶܫ
௝ୀ଴

ு
௛ୀଵ  

   (B-15) 
 

Here, ∑ ௘షഊ్,೓∗಺∗൫ఒ్,೓∗ூ൯ೕ௝!ஶ௝ୀ଴  is a summation of the probability of a Poisson (୕ߣ,௛ ∗  ,distribution, which equals to 1. Therefore (ܫ

൧(௞,௞ାଵ)ܥൣܧ  = 12෍ቌ෍ߚ௛,௚ ∗ ୻,௚ீߣ
௚ୀଵ ቍ ଶுܫ௛,୕ߣ

௛ୀଵ = ଶ2ܫ ෍ቌ෍ߚ௛,௚ ∗ ୻,௚ீߣ
௚ୀଵ ቍ ௛ு,୕ߣ

௛ୀଵ  

(B-16) 
 

The above expectation of ܥ(௞,௞ାଵ) is a special case when the cost function is linear with the data errors.  
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Appendix C 
 
Proofs of Selected Lemmas and Propositions 
 
Proof of Lemma 1 
 
To prove that ௞ܸ(ܵ௞) is a non-decreasing function of S୩, we only need to show that given ܵ௞ଵ > ܵ௞ଶ,  ௞ܸ(ܵ௞ଵ) ≥ ௞ܸ൫ܵ௞ଶ൯ will hold. 
 
According to Eq. (5): ௞ܸ(ܵ௞) = ݉݅݊௔ೖ {ܽ௞ܥ௎ + (1 − ܽ௞)ܧ[ܥ(ܵ௞)] + ]ܧ ௞ܸାଵ(ܵ௞ାଵ)]} +  ൧, the total expected interval staleness costs(௞,௞ାଵ)ܥൣܧ

remain the same regardless of adopted maintenance policies. Hence, we consider the following two scenarios: 
 

Scenario 1: If  ܽ௞(ܵ௞ଵ) = ܽ௞൫ܵ௞ଶ൯ = 1, ௞ܸ(ܵ௞ଵ) = ௞ܸ൫ܵ௞ଶ൯ = ௎ܥ + ൧(௞,௞ାଵ)ܥൣܧ + ෍ ൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ[ (ܵ௞,௞ାଵ)]ௌ(ೖ,ೖశభ)∈ॺ  

  (C-1) 
 

Scenario 2: Otherwise, assume ߨଵ is the optimal policy when the system is in state ܵ௞ଵ and ߨଶ is the optimal policy for a system state ܵ௞ଶ. Suppose  ݇௎ is the first decision epoch with a synchronization for the CDB in state ܵ௞ଵ under the optimal policy ߨଵ. If the system in state ܵ௞ଶ also follows policy ߨଵ, which also runs the first synchronization operation at ݇௎. Then from time  ݇௎ + 1, the expected system costs will 
be the same in the two scenarios, i.e. ൣܧ ௞ܸೆାଵగభ (ܵ௞ೆାଵ)൧ = ∑ ൫݌ (ܵ௞,௞ାଵ)൯ ௞ܸೆାଵ[ (ܵ௞,௞ାଵ)]ௌ(ೖ,ೖశభ)∈ॺ . Therefore, 

 ௞ܸ(ܵ௞ଵ) = ௞ܸగభ(ܵ௞ଵ) = [(௞ଵܵ)ܥ]ܧ + ௞ାଵଵܵ)ܥ]ܧ )] + ⋯+ ൫ܵ௞ೆିଵଵܥൣܧ ൯൧ + ௎ܥ + ∑ ൫݌ (ܵ௞,௞ାଵ)൯ ௞ܸೆାଵ[ (ܵ௞,௞ାଵ)]∆ሬሬԦ∈ॺ      
 (C-2) 

 ௞ܸగభ൫ܵ௞ଶ൯ = ൫ܵ௞ଶ൯൧ܥൣܧ + ൫ܵ௞ାଵଶܥൣܧ ൯൧ + ⋯+ ൫ܵ௞ೆିଵଶܥൣܧ ൯൧ + ௎ܥ + ෍ ൫݌ (ܵ௞,௞ାଵ)൯ ௞ܸೆାଵ[ (ܵ௞,௞ାଵ)]ௌ(ೖ,ೖశభ)∈ॺ  

 (C-3) 
 

Since ܵ௞ଵ > ܵ௞ଶ, we will have ܧ[ܥ(ܵ௞ଵ)] > ൫ܵ௞ଶ൯൧. Without any synchronization from decision epoch k to epoch ݇௎ܥൣܧ	 − 1, the data errors 
and queries in the system follow the same traffic pattern. This means ௧ܵଵ > ௧ܵଶ will always hold for t ∈ {k, k+1, …, ݇௎ − 1}. Therefore, we 
have 
[(௞ଵܵ)ܥ]ܧ  + ௞ାଵଵܵ)ܥ]ܧ )] + ⋯+ ൫ܵ௞ೆିଵଵܥൣܧ ൯൧ > ൫ܵ௞ଶ൯൧ܥൣܧ + ൫ܵ௞ାଵଶܥൣܧ ൯൧ + ⋯+ ൫ܵ௞ೆିଵଶܥൣܧ ൯൧ 

     (C-4) 
 
Hence, ௞ܸ(ܵ௞ଵ) = ௞ܸగభ(ܵ௞ଵ) > ௞ܸగభ൫ܵ௞ଶ൯. 
 
Further, because ߨଶ is the optimal policy to apply given system in state ܵ௞ଶ, the following inequality must hold: 
 ௞ܸగభ൫ܵ௞ଶ൯ ≥ ௞ܸగమ൫ܵ௞ଶ൯ = ௞ܸ൫ܵ௞ଶ൯ 

                                    (C-5) 
Therefore, we conclude: ௞ܸ(ܵ௞ଵ) > ௞ܸ൫ܵ௞ଶ൯. 
 
From the discussions under both Scenarios 1 and 2, we conclude that given ܵ௞ଵ > ܵ௞ଶ, ௞ܸ(ܵ௞ଵ) ≥ ௞ܸ൫ܵ௞ଶ൯ will always hold. Therefore, ௞ܸ(ܵ௞) 
is a non-decreasing function with ܵ௞. 
 
 
Proof of Lemma 2 
 
The optimal decision should always lead to a smaller expected system costs at any decision epoch. When the CDB is synchronized, based on 
the optimal system costs function in Eq. (5), we denote the incurred future system cost as 
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,௞(ܵ௞ܬ ܽ௞ = 1) = ௎ܥ + ൧(௞,௞ାଵ)ܥൣܧ + ෍ ൫݌ (ܵ௞,௞ାଵ)൯ ௞ܸାଵ(ܵ(௞,௞ାଵ))ௌ(ೖ,ೖశభ)  

               (C-6) 
 

In the absence of a synchronization, we denote the incurred future system cost as  
,௞(ܵ௞ܬ  ܽ௞ = 0) = [(௞ܵ)ܥ]ܧ	 + ൧(௞,௞ାଵ)ܥൣܧ + ෍ ൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ(ܵ(௞,௞ାଵ) + ܵ௞)ௌ(ೖ,ೖశభ)  

 (C-7) 
 

According to Lemma 1, ௞ܸାଵ(ܵ(௞,௞ାଵ) + ܵ௞) ≥ 	 ௞ܸାଵ(ܵ(௞,௞ାଵ)). Therefore, if ܧ[ܥ(ܵ௞)] >  ௎, the incurred future system cost without anܥ
synchronizationܬ௞(ܵ௞, ܽ௞ = 0) will be larger than the incurred future system cost after synchronization: ܬ௞(ܵ௞, ܽ௞ = 1). Therefore, it is 
always optimal to synchronize the CDB when ܧ[ܥ(ܵ௞)] >   .௎ܥ
 
 
Proof of Proposition 1 
 
In Eq. (11), ܹ(ܵ௞) = [(௞ܵ)ܥ]ܧ + ∑ ]൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ൫ܵ௞ + ܵ(௞,௞ାଵ)൯ − ௞ܸାଵ൫ܵ(௞,௞ାଵ)൯]ௌ(ೖ,ೖశభ) . According to Definition 1, ܧ[ܥ(ܵ௞)] is 

increasing with ܵ௞. Also by Lemma 1, ௞ܸାଵ൫ܵ௞ + ܵ(௞,௞ାଵ)൯ is a non-decreasing function with ܵ௞. Hence we can conclude that ܹ(ܵ௞) is 
monotonically increasing with ܵ௞.  
 
According to the Bellman Eq. (10): ܽ௞ = arg݉݅݊	{ܽ௞ܥ௎ + (1 − ܽ௞)ܧ[ܥ(ܵ௞)] + ]ܧ ௞ܸାଵ(ܵ௞ାଵ)]}, and from Eq. (6) ܧ[ ௞ܸାଵ(ܵ௞ାଵ)] =∑ ൫݌ (ܵ௞,௞ାଵ)൯ ௞ܸାଵ[ (ܵ௞,௞ାଵ) + (1 − ܽ௞)ܵ௞]ௌ(ೖ,ೖశభ) , we have the optimal action ܽ௞ at epoch k as 
 ܽ௞ = ൝1,				ܧ[ܥ(ܵ௞)] +	∑ ൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ[ (ܵ௞,௞ାଵ) + ܵ௞]ௌ(ೖ,ೖశభ) ≥ ௎ܥ + ∑ ൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ[ (ܵ௞,௞ାଵ)]ௌ(ೖ,ೖశభ)0,					ܧ[ܥ(ܵ௞)] +	∑ ൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ[ (ܵ௞,௞ାଵ) + ܵ௞]ௌ(ೖ,ೖశభ) < ௎ܥ + ∑ ൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ[ (ܵ௞,௞ାଵ)]ௌ(ೖ,ೖశభ)   

      (C-8) 
 

Moving ܧௌ(ೖ,ೖశభ)ൣ ௞ܸାଵ൫ܵ(௞,௞ାଵ)൯൧ to the left-hand-side of the inequality, the condition becomes the comparison between ܹ (ܵ௞) = [(௞ܵ)ܥ]ܧ +∑ ൫݌ (ܵ௞,௞ାଵ)൯[ ௞ܸାଵ൫ܵ௞ + ܵ(௞,௞ାଵ)൯ − ௞ܸାଵ൫ܵ(௞,௞ାଵ)൯]ௌ(ೖ,ೖశభ)  and ܥ௎. The optimal action at decision epoch k is not to synchronize the CDB if ܹ(ܵ௞) <  .௎, and to synchronize the CDB otherwiseܥ
 
 

Proof of Lemma 3 
 
According to the control limit policy in Eq. (12) and Proposition 1, as ܵ௞ increases, ܹ(ܵ௞) increases from smaller than ܥ௎ to larger than ܥ௎. 
When the value of ܹ(ܵ௞) crosses ܥ௎, the optimal action will change from 0 to 1. Therefore, ܽ௞(ܵ௞) is a non-decreasing function of ܵ௞. 
 

 
Proof of Lemma 4 
 
Based on the control limit policy (12), at the last decision epoch K, the optimal action is to synchronize whenever ܹ(ܵ௄) ≥ ௎. In addition, ܹ(ܵ௄)ܥ = [(௄ܵ)ܥ]ܧ + ∑ ]൫ܵ(௞,௞ାଵ)൯݌ ௄ܸାଵ൫ܵ௄ + ܵ(௞,௞ାଵ)൯ − ௄ܸାଵ൫ܵ(௞,௞ାଵ)൯]∆ሬሬԦ . 
 
At the last epoch, ௄ܸାଵ(∙) = 0, so we have ܹ(ܵ௄) =  The optimal action to take should be determined by .[(௄ܵ)ܥ]ܧ
 ܽ௞ = ൜1,					ܹ(ܵ௄) = [(௄ܵ)ܥ]ܧ ≥ ܹ(ܵ௄)					௎0,ܥ = [(௄ܵ)ܥ]ܧ <    ௎ܥ

   (C-9) 
 

Following the decision rule in Eq. (13), we have the threshold ߞ௄ =  :௞. Therefore, we have the value of threshold at kth epochߞ crosses [(௞ܵ)ܥ]ܧ ௎ whenܥ which makes ܹ(ܵ௞) larger than ,[(௞ܵ)ܥ]ܧ ௞ is the boundary forߞ ௎. Because the thresholdܥ
௞ߞ  = ௎ܥ − ෍ ]൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ൫ܵ௄ + ܵ(௞,௞ାଵ)൯ − ௞ܸାଵ൫ܵ(௞,௞ାଵ)൯]ௌ(ೖ,ೖశభ)  

   (C-10) 
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Based on Lemma 1, ∑ ]൫ܵ(௞,௞ାଵ)൯݌ ௞ܸାଵ൫ܵ௄ + (ܵ௞,௞ାଵ)൯ − ௞ܸାଵ൫ (ܵ௞,௞ାଵ)൯]ௌ(ೖ,ೖశభ)  should always be positive, therefore, 
௞ߞ  < ௎ܥ =  ௄, for k=1, 2, …, K-1ߞ

(C-11) 
 
 

Proof of Lemma 5 
 
The expected accumulated data errors between two check points is: (ߣ୻,ଵܫ, ,ܫ୻,ଶߣ … ,  In expectation, the expected number of new .(ܫீ,୻ߣ
coming information queries in the next interval is	(୕ߣ,ଵܫ, ,ܫଶ,୕ߣ … ,  .(ܫு,୕ߣ
 
The expected loss to all those expected arriving queries by the accumulated data errors in one check interval equals 
)ܥ]ܧ  ூܵ)] = ଶܫ ቎෍୕ߣ,௛ ቌ෍ߚ௚→௛ߣ୻,௚ீ

௚ୀଵ ቍு
௛ୀଵ ቏ 

    (C-12) 
 

If the data errors accumulated in one check interval will lead to an expected data staleness cost in the next coming interval that is larger than 
the synchronization cost ܥ௎, in expectation it would be optimal to synchronize the CDB system at every single decision epoch, then there 
will be no need to discuss the policy in detail.  
 
Therefore, for the upper bound, we have the constraint ܥ]ܧ( ூܵ)] ≤   ,.௎, i.eܥ
ଶܫ  ቎෍ ௛,୕ߣ ቌ෍ߚ௚→௛ߣ୻,௚ீ

௚ୀଵ ቍு
௛ୀଵ ቏ ≤  ௎ܥ

   (C-13) 
 

which is equivalent to 
 

ܫ ≤ ඩܥ௎ ቎෍ ௛,୕ߣ ቌ෍ߚ௚→௛ߣ୻,௚ீ
௚ୀଵ ቍு

௛ୀଵ ቏ିଵ 

 (C-14) 
 

Hence, we have the interval upper bound ܫ௨௕ = ටܥ௎ൣ∑ ∑௛൫,୕ߣ ୻,௚௚ீୀଵߣ௚→௛ߚ ൯ு௛ୀଵ ൧ିଵ. 
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Appendix D 
 
Comparison between TDS Policy and Hybrid Policy 
 
To demonstrate the superiority of the time-based dynamic synchronization (TDS) policy, we also compare the TDS policy against a hybrid 
policy proposed by Dey et al. (2015) with the following characteristics: It involves two thresholds: a fixed time threshold, I*, and a staleness 
cost threshold, S*, both optimized to be used in combination. Under this hybrid policy, a system refresh is initiated if either the time threshold 
or the staleness cost threshold is triggered, whichever happens earlier. 
 
Since the TDS policy and the hybrid policy (Dey et al. 2015) use different model parameters and adopt different assumptions, to make the 
comparison possible, we have to (1) obtain the key model parameters for Dey et al.’s hybrid policy by mapping its model parameters with 
ours, and (2) downgrade our policy to fit Dey et al.’s model assumptions. More specifically, the key adaptions made to facilitate a meaningful 
comparison are summarized in Table D1 below. 
 

Table D1.  Key Adaptations Made to the TDS Policy 

Original Assumptions Adapted Settings 
Multiple types of data errors Single type of data error 

Multiple types of queries Single type of query 
Unit staleness cost for each error-query pair One generalized random unit staleness cost 

Different costs for synchronizations running in business 
hours and off-business hours 

No disruption cost when planned ahead of time or scheduled 
during off-business hours 

 

 

Experimental Results 
 
In our simulated experiments, we implemented the hybrid policy developed by Dey et al. (2015) and the downgraded TDS policy based on 
the revised assumptions described above. The key parameter values are set as followings: patching (data error) arriving rate λ = 3, mean 
severity level ̅ܥ௘ = 2, simulated time window T = 5,000 units of time, and system check interval for TDS policy I = 1 (daily). Regarding the 
normalized patching setup cost (ܿ௦) and normalized business disruption cost (ܿௗ) as defined in Dey et al. (2015), we tried multiple values: ܿ௦, ܿௗ ∈ {5, 10, 15, 20, 25, 30, 35, 40}.  
 
In each experiment run, we first select a combination of ܿ௦ and ܿௗ values, then compute the optimal TDS policy and the optimal hybrid 
policy, and subsequently simulate the synchronization operations using the two policies and record their costs.  
 
Table D2 summarizes the percentage of cost saving achieved by the TDS policy compared to the hybrid policy. The results show that the 
cost saving is consistently positive under all scenarios, ranging from 3.84% to 10.22%. This clearly shows that the TDS policy is a superior 
method when compared with the hybrid method. 
 

Table D2.  Performance Comparison: (Cost of Hybrid – cost of TDS)/Cost of Hybrid 

 cd =5 cd =10 cd =15 cd =20 cd =25 cd =30 cd =35 cd =40 

cs =5 6.84% 6.72% 6.84% 6.87% 6.90% 6.69% 6.84% 6.59% 

cs =10 7.88% 9.24% 10.20% 10.15% 10.15% 10.18% 10.22% 9.89% 

cs =15 6.95% 9.89% 9.24% 9.58% 9.56% 9.59% 9.55% 9.55% 

cs =20 5.91% 9.19% 9.45% 9.21% 9.22% 9.23% 9.33% 9.24% 

cs =25 4.86% 8.81% 9.33% 9.09% 9.03% 9.36% 9.09% 9.09% 

cs =30 5.03% 8.42% 8.81% 9.25% 8.95% 8.76% 8.93% 8.93% 

cs =35 4.57% 7.97% 8.76% 9.12% 9.10% 9.09% 9.10% 9.04% 

cs =40 3.84% 7.52% 8.35% 8.96% 8.96% 8.82% 8.64% 8.55% 
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To understand how the hybrid policy works, we also record the numbers of times that synchronizations are trigged by the time-based threshold 
and total control threshold, as summarized in Table D3. The results are as expected —when the normalized business disruption cost (ܿௗ) is 
low and dominated by the normalized patching setup cost (ܿ௦), the synchronizations are mostly triggered by the total control threshold; when 
the normalized business disruption cost (ܿௗ) dominates the normalized patching setup cost (ܿ௦), synchronizations are mostly triggered by the 
time-based threshold. When ܿௗ ≥ 20, among all the scenarios, only one synchronization is triggered by the total control-based threshold and 
all other synchronizations are initiated by the time-based threshold. 
 
Table D3.  Numbers of Synchronizations Triggered by Time-based and Total Control Thresholds 

 cd =5 cd =10 cd =15 cd =20 cd =25 cd =30 cd =35 cd =40 

cs =5 (4336, 282) (4742, 1) (4743, 0) (4742, 0) (4743, 0) (4743, 0) (4743, 0) (4743, 0) 

cs =10 (2184, 949) (3340, 11) (3353, 0) (3353, 0) (3353, 0) (3353, 0) (3353, 0) (3353, 0) 

cs =15 (1233, 1293) (2662, 59) (2737, 1) (2738, 0) (2738, 0) (2738, 0) (2738, 0) (2738, 0) 

cs =20 (709, 1483) (2174, 167) (2369, 2) (2371, 0) (2371, 0) (2371, 0) (2371, 0) (2371, 0) 

cs =25 (454, 1531) (1794, 285) (2110, 9) (2121, 0) (2121, 0) (2121, 0) (2121, 0) (2121, 0) 

cs =30 (319, 1502) (1488, 398) (1905, 28) (1936, 0) (1936, 0) (1936, 0) (1936, 0) (1936, 0) 

cs =35 (232, 1459) (1270, 472) (1748, 37) (1792, 0) (1792, 0) (1792, 0) (1792, 0) (1792, 0) 

cs =40 (166, 1429) (1065, 553) (1591, 72) (1675, 1) (1676, 0) (1676, 0) (1676, 0) (1676, 0) 

 

Why the TDS Policy Outperforms the Hybrid Policy? 
 
To understand why the TDS policy consistently outperforms the hybrid policy, we first examine how the hybrid policy works. The hybrid 
policy tries to take advantage of the strengths of both the time-based policy and the total control policy. Which policy plays a more dominant 
role largely depends on the relative size of the business disruption cost:  
 
(1) When the disruption cost is low in relation to the setup cost, synchronization operations under the hybrid policy will be primarily 

triggered by its total control policy component. This result comes with an extra cost — most synchronization operations under the 
hybrid policy will incur business disruption cost, while the disruption cost is never incurred under the TDS policy. As validated by our 
experimental results, this difference itself can erode any small theoretical advantage that the total control policy may enjoy over the 
TDS policy. 

 
(2) When the disruption cost is high compared to the setup cost, synchronizations under the hybrid policy will be primarily triggered by 

the time-based policy. As we have shown in the paper, when the time-based policy (with an optimized synchronization interval) is a 
standalone policy, it is dominated by the TDS policy. This result is theoretically intuitive because synchronization at every decision 
epoch (by setting the synchronization threshold extremely low) is a possible scenario under the TDS policy. When the time-based 
policy is a component of the hybrid policy, as shown in Theorem 3 of Dey et al. (2015), its optimal time interval threshold (ݔு∗ ) increases 
from that of the standalone policy (ݔ∗). When comparing the time-based policy against the TDS policy, increasing the time interval of 
the former generally makes it worse when compared with the later. Although the lower synchronization frequency issue can be 
compensated by the inclusion of the total control policy, any synchronization triggered under the total control policy comes at an extra 
cost — the business disruption cost. With all factors considered, the TDS policy should outperform the hybrid policy under this 
scenario.  

 
In sum, the dynamic nature of the TDS policy (running synchronization only when the benefit is greater than the cost) and the fact that it 
can avoid business disruption cost bring too much of an advantage for the hybrid policy to overcome, hence the TDS policy can outperform 
the hybrid policy. 
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