
RESEARCH ARTICLE

FOLLOWERSHIP IN AN OPEN-SOURCE SOFTWARE
PROJECT AND ITS SIGNIFICANCE IN CODE REUSE

Qiqi Jiang
Department of Digitalization, Copenhagen Business School, Howitzvej 60,

Frederiksberg 2000 DENMARK {qj.digi@cbs.dk}

Chuan-Hoo Tan
Department of Information Systems and Analytics, National University of Singapore,

 13 Computing Drive, 117417 SINGAPORE {tancho@comp.nus.edu.sg}

Choon Ling Sia
Department of Information Systems, City University of Hong Kong, Tat Chee Avenue 83, Hong Kong, SAR CHINA {iscl@cityu.edu.hk}

and Department of Information Management, National Taiwan University, Taipei City 106, Taiwan R.O.C. {iscl@cityu.edu.hk}

Kwok-Kee Wei
Department of Information Systems and Analytics, National University of Singapore,

 13 Computing Drive, 117417 SINGAPORE {weikk@comp.nus.edu.sg}

Appendix

Summary of Related Studies Examining OSS Leadership

Table A1. Seminal Studies Examining Leadership in the OSS Projects or Communities

Study Methods (and Data) Key Findings and Argument in Leadership

Fielding (1999) Case study: Case study of Apache
project.

Different from an authoritative leadership in most OSS
projects, the author unveiled a shared leadership mech-
anism in Apache project in which a small group of con-
trolling members uses a relatively democratic decision
process.

Lerner and Tiróle (2002) Conceptual and literature reviews. The performance and success of an OSS project are
dependent on the presence of a credible leader or
leadership. They suggested that a strong centralization
of authority and leadership characterizes OSS projects,
such as Linux.

Fleming and Waguespack
(2007)

Quantitative investigation: Archival
data from Internet Engineering
Task Force documents.

This study identified and discussed two imperative capa-
bilities of OSS leadership: strong technical contribution
and binding multiple communities.

MIS Quarterly Vol. 43 No. 4–Appendix/December 2019 A1

Jiang et al./Followership in an OSS Project

Table A1. Seminal Studies Examining Leadership in the OSS Projects or Communities

Study Methods (and Data) Key Findings and Argument in Leadership

O’Mahony and Ferraro
(2007)

Mixed method.
Qualitative investigation: Interview
with Debian contributors.
Quantitative investigation:
Regression on the variables
constructed from multisourced
archival data including project
directory, developer database,
bug-tracking database, package
popularity database, and identity
authentication database.

This work discussed the role of leadership in governing
an OSS project. The authority of leadership can be high-
lighted in the bureaucratic mechanism, which increases
the management efficiency. The leaders can construct
the democratic governance mechanism to represent the
community’s interests and adapt with members’ evolving
interpretation of leadership.

Giuri et al. (2008) Quantitative investigation:
Econometric analysis with three-
year archival data from
Sourceforge.net.

OSS project leader with diversified skill set can coor-
dinate the contribution from various participants and
motivate such participants. The presence of leadership
is associated with the degree of modularity of the
development process.

Li et al. (2012) Quantitative investigation:
Structural equation modeling with
survey data contributed by 187
developers from Sourceforge.net.

Leader can use transformational leadership and active
management style to positively stimulate developers’
intrinsic and extrinsic motivations, respectively.

Faraj et al. (2015)* Quantitative investigation:
Archival data collected from three
different Usenet newsgroups.

This work argued that the leadership in community-
based production groups can be identified by
(1) extended contributed knowledge; (2) sociability, that
is, facilitating communication among online participants;
and (3) structural social capital, that is, positions in the
online social network.

Johnson et al. (2015) Quantitative investigation: Using
survey to identify the leader of
each community; applying Natural
Language Processing package to
extract primary variables from
archival data.

This work argued that the following factors are instru-
mental in forming leadership: (1) occupying a formally
authoritative role in community-based production groups,
(2) being better positioned in the communication
network, and (3) using unique patterns of language.

*Although Usernet newsgroups are not typical OSS project groups, the nature of these groups in this study, namely, object-oriented programming,
databases, and C++ programming, are similar to those of OSS. The authors also cited OSS studies when they developed their theoretical
arguments. Thus, we included this work in this table.

Post Hoc Analyses

In the first set of post hoc analyses, the data were subjected to two conventional robustness checks, namely, varying the operationalization of
the dependent variable and varying the regression analysis models. We varied the dependent-variable operationalization from AvgDiff_
CodeReusei (i.e., the average difference in code reuse among leader i’s OSS projects at T2 and T1) to AvgRatio_ CodeReusei. This variable
signifies the average change (as a ratio) in the extent of code reuse for leader i’s projects at T2 compared with that at T1. A high value of
AvgRatio_CodeReusei indicates a great extent of code reuse among that leader’s OSS projects. Multilevel regression was applied to estimate
the coefficients. Two additional regression models were used to estimate the relationship between the predictors and the focal dependent
variables, AvgDiff_CodeReusei. Specifically, we applied this variable to reconcile the effect of nuisance parameters (Model 2 in Table A2)
and estimate the influence of key predictors and the related control variables for AvgDiff_CodeReusei with random-intercept model (Model
3 in Table A2) (McCulloch and Neuhaus 2001). Table A2 presents the summary of results. The results show significant consistency with the
earlier findings obtained in the main testing.

A2 MIS Quarterly Vol. 43 No. 4–Appendix/December 2019

Jiang et al./Followership in an OSS Project

Table A2. First Post Hoc Analysis

Dependent Variables

AvgRatio_CodeReusei AvgDiff_CodeReusei

Model 1 Model 2 Model 3

Developer_followershipijt1 !0.088**
(0.039)

!0.197**
(0.085)

!0.200**
(0.085)

Observer_followershipit1 0.061***
(0.008)

0.221***
(0.018)

0.211***
(0.018)

Project_agejit1 !0.017
(0.031)

0.076
(0.069)

0.053
(0.071)

Leader_ageijt1 !0.756***
(0.104)

!1.515***
(0.253)

!1.544***
(0.241)

Leader_followingijt1 0.004
(0.009)

!0.062***
(0.018)

!0.062***
(0.018)

Project_sizejit1 0.002
(0.009)

!0.012
(0.019)

!0.021
(0.020)

Project_knowledgejit1 !0.128***
(0.039)

!0.243***
(0.090)

!0.249***
(0.088)

Cumulative_Versionjit1 !0.012
(0.008)

!0.024
(0.019)

!0.010
(0.019)

Ratiojit1 !0.010
(0.014)

0.096**
(0.040)

0.103***
(0.036)

Recencyjit1 !0.036
(0.012)

!0.035
(0.025)

!0.025
(0.025)

Project_observerjit1 0.086***
(0.011)

0.144***
(0.026)

0.183***
(0.027)

Language_Popularityjit1 !0.416
(0.430)

0.325
(0.905)

!0.174
(0.946)

Language_Media_Coveragejit1 !0.006
(0.005)

0.005
(0.011)

0.005
(0.012)

Intercept 5.774***
(0.859)

11.388***
(2.053)

11.613***
(1.951)

Deviance (-2 × log-likelihood) 1000.527 2398.375 2356.345

Akaike’s information criterion 1082.527 2484.375 2438.345

Bayesian information criterion 1284.557 2693.654 2637.889

*p # 0.1; **p # 0.05; ***p # 0.01; figures are displayed in the format of “Coefficient (Std. Err.)”
Note: For Model 1, we replaced the dependent variable by AvgRatio_CodeReusei (average change as a ratio in the extent of code reuse for leader
i’s projects at T2 compared with T1). For Model 2, we applied restricted maximum likelihood estimation for reconciling the effect of nuisance
parameters. For Model 3, we applied the random-intercept model for estimating the coefficients. The results from the three models are consistent
with those in Table 4 in the main body. To easily interpret the results, we scaled down Project_agejit1, Ratiojit1, and Recencyjit1 by factors of 1000,
100, and 100, respectively. The programming languages, denoted by Programming_Languageji, and project category, denoted by Project_
Categoryji, were created as dummy variables and estimated in the regression model but are not reported for brevity.

In the second set of post hoc analyses, we segmented the OSS projects into affiliated categories that could have highly diverse complexity in
OSS development (Au et al. 2009; Sen 2007). The dataset contained three project categories: Software Framework, Application Software,
and Documentation File. Two interesting findings can be drawn from the results in Table A3. First, a large number of followers play the role
of observer; specifically, a close observer of the leader can enhance code reuse across the types of OSS projects. Second, given that the Soft-
ware Framework (Model 1 in Table A3) and Application Software (Model 2 in Table A3) types are hosted on GitHub, developers have to
constantly contribute. Therefore, the developer–follower relationship has a significant positive effect on code reuse. Miscellaneous OSS textual
files, such as Cascading Style Sheet files for websites or unified configuration files for software, were included in Model 3 in Table A3. In
contrast to the previous two categories (whose operations heavily rely on developers), the OSS projects in Documentation File can be used
extensively. However, developers in this study show minimal interest in such relatively insignificant projects. Consequently, the results in
this third case show that Developer_followershipijt1 does not influence the extent of code reuse.

MIS Quarterly Vol. 43 No. 4–Appendix/December 2019 A3

Jiang et al./Followership in an OSS Project

Table A3. Second Post Hoc Analysis

Dependent Variables

AvgDiff_CodeReusei

Model 1 Model 2 Model 3

Developer_followershipijt1 !0.193*
(0.119)

!0.357**
(0.147)

0.121
(0.172)

Observer_followershipit1 0.244***
(0.026)

0.249***
(0.031)

0.210***
(0.035)

Project_agejit1 0.050
(0.103)

!0.002
(0.121)

!0.011
(0.128)

Leader_ageijt1 !4.569***
(0.425)

!0.892*
(0.529)

!0.080
(0.335)

Leader_followingijt1 !0.069***
(0.025)

!0.046
(0.032)

!0.058
(0.036)

Project_sizejit1 !0.030
(0.026)

!0.006
(0.032)

!0.008
(0.051)

Project_knowledgejit1 !0.147
(0.112)

!0.650***
(0.183)

!0.179
(0.175)

Cumulative_Versionjit1 !0.010
(0.026)

!0.063*
(0.034)

0.044
(0.038)

Ratiojit1 0.014
(0.054)

0.231*
(0.119)

0.196***
(0.050)

Recencyjit1 !0.025
(0.035)

0.006
(0.042)

!0.046
(0.056)

Project_observerjit1 0.197***
(0.037)

0.170***
(0.052)

0.078
(0.052)

Language_Popularityjit1 0.209
(1.352)

!1.936
(1.648)

!0.790
(1.802)

Language_Media_Coveragejit1 !0.004
(0.015)

0.035
(0.021)

0.012
(0.024)

Intercept 34.075***
(3.196)

6.652*
(3.937)

0.732
(2.475)

Deviance (!2 × log-likelihood) 1123.358 545.363 541.493

Akaike’s information criterion 1193.358 609.5363 605.149

Bayesian information criterion 1339.441 722.6047 714.748

*p # 0.1; **p # 0.05; ***p # 0.01; figures are displayed in the format of “Coefficient (Std. Err.)”
Note: We separated the samples into three sub-samples by the software categories, namely, Software Framework (Model 1), Application Software
(Model 2), and Documentation Files (Model 3). To easily interpret the results, we scaled down Project_agejit1, Ratiojit1, and Recencyjit1 by factors
of 1000, 100, and 100, respectively. The programming languages, denoted by Programming_Languageji, were created as dummy variables and
estimated in the regression model but are not reported for brevity.

The third set of post hoc analyses was conducted to check for potential multicollinearity problems. In particular, the analysis used the ordinary
least squares model. In this step, we also calculated VIF and condition index (CI) values to assess potential multicollinearity problems. The
multicollinearity in the stated results should not be a problem because no VIF calculations exceed 5.0, and the CI value is 24.838 (Ho and
Richardson 2013). The robustness of the model was also validated and demonstrated by adding the control variables into the main model by
using a stepwise approach. Due to the page limitation, the details of estimated results are available from the authors upon request.

The fourth set of post hoc analyses was conducted to rule out an alternative explanation for “follower inbreeding” among certain OSS projects.
The results discussed in the preceding paragraphs indicate that the followership conceived through prior collaboration is not conducive to code
reuse. However, these findings may be the result of an alternative explanation: enhanced code reuse may not be attributed to the open
developer collaboration but can be due to the scarce participation of certain developers in other OSS projects. Their lack of enthusiasm may
be caused by extreme loyalty to specific leaders. Thus, the extant projects with tight developer–follower relationships were split into two

A4 MIS Quarterly Vol. 43 No. 4–Appendix/December 2019

Jiang et al./Followership in an OSS Project

subgroups, namely, those who worked only on a leader’s project and those who worked on multiple projects with different leaders. If no
difference exists in code reuse between the two groups, then the concern of “follower inbreeding” can be minimized.

Four steps were taken to test this possibility at the project level. First, a project-level dependent variable, Diff_CodeReusej, was constructed.
This variable denotes the difference in the extent of code reuse of the OSS project j managed by the same project leader between T1 and T2.
Next, a new binary variable, Single_leaderjt1, was constructed. This variable indicates whether the focal OSS project j is administered by a
single leader (a value of 1 indicates that the project was administered by a single leader). Third, using the descriptive statistics of Developer_
followershipijt1 (mean = 0.320 and S.D. = 0.371) presented in Table 2, the OSS projects with an extent of collaborative followership greater
than 0.3 (a similar value to the sum of the mean and S.D.) were labeled as projects with a tight developer–follower relationship. A high value
of Developer_followershipijt1 indicates a tight relationship. Finally, the control variables were transformed into the project level1 and entered
as Single_leaderit1 into the OLS regression model. Although the selected OSS projects can be statistically accepted as the OSS projects with
high developer followers (Developer_followershipijt1 is greater than 0.3), the regression models were consistently run with different samples
through a repeated increase in the value of Developer_followershipijt1 from 0.3 to 0.9 by intervals of 0.1. The estimated coefficient of
Single_leaderjt1 is insignificant under different extent of collaborative followership. Thus, we can conclude that no difference exists in code
reuse between the two groups. Due to the page limitation, the details of estimated results are available from the authors upon request.

Additional Investigations: Survey and Focus Groups

We conducted two post hoc investigations in collaboration with an IT research agency to validate our arguments regarding code reuse and the
underlying role of learning. The first post hoc investigation included a survey, which had 164 complete responses from GitHub-registered
members. The second post hoc investigation included focus groups of 24 GitHub-registered members.2 Three focus group were held with eight
GitHub-registered members in each (for approximately 90–120 minutes each).3 The qualitative data4 extracted from the focus groups enriched
the survey findings. Below we present results from both investigations.

We grounded the survey in the social learning framework (Bandura 1977). The aim was to test our conjecture that code reuse (as measured
in the survey as the intention to reuse the codes) can be contributed by followers who are learning from their leaders. Figure A1 presents the
model. Intention to code reuse is the outcome variable. We included several control variables related to OSS values and beliefs, namely, the
perception of importance to (1) code reuse, (2) sharing mentality, and (3) OSS team diversity, tenure in GitHub, OSS usage experience, gender,
and age. Table A5 shows the operalization of each construct. We used SmartPLS 2.0.M3 to test the model. Table A4 reports the estimated
path coefficients, and the results for construct validity and reliability.

1Leader_ageijt1 (age of leader i) and Leader_followingijt1 (the number of people followed by leader i) were excluded because the two variables were typically
leader-level covariates.

2All interviewees first introduced themselves and shared their OSS experience. They were then asked about their general understanding of OSS beliefs and values:
two key components of OSS ideology, code reuse in software development (especially for the OSS project), and their experience as the followers (as developers
or observers) in one or more OSS projects. The group interviews were recorded in an audio–visual format. Each interviewee received a compensation of US$50
for his or her time.

3A total of 24 interviewees were involved, including active OSS participants with numerous experiences in OSS development and relatively passive OSS
participants who mostly lurk in the community. These 24 interviewees (14 males and 10 females) were arranged into three focus groups to hold further dis-
cussions. The average programming experience (in the real project) of these respondents is approximately 5 years. Their programming language ranges from
objective-oriented languages (e.g., Java, Objective-C, or C#) to scripting language (e.g., PHP, JavaScript, Python, or Ruby).

4Two independent assistants were recruited to transcribe the protocols of the focus groups. Two coders were then recruited to code the protocols following
standard procedures (Someren et al. 1994). Their coding was very similar (Cohen’s kappa = 0.88, p < 0.010), indicating high inter-coder reliability (Cohen and
Reed 2006). Respondents were first asked to describe their understanding of OSS, general thoughts on code reuse, and personal opinions about the follower–
leader relationship. Approximately 12,000 common words in the answers of each focus group discussion were found. Table A6 summarizes some representative
codes and descriptions.

MIS Quarterly Vol. 43 No. 4–Appendix/December 2019 A5

Jiang et al./Followership in an OSS Project

Enactive Mastery
Experience (EME)

Mastery
Modeling (MM)

Intention of Code
Reuse (ICR)

+

+

Control Variables
*Alternative observation

*OSS values
*OSS beliefs

*Importance to code
reuse/Sharing

Mentality/Team diversity*
*Tenure in OSS/Github

*Gender
*Age

Figure A1. Conceptual Model of the Follow-up Survey

Table A4. Results of the Post Hoc Survey Investigation

Estimated Path Coefficient AVE Composite Reliability Cronbach’s Alpha

MM 0.15** 0.638 0.876 0.815

EME 0.24*** 0.609 0.817 0.701

R square = 0.59; *p value # 0.1; **p value # 0.05; ***p value # 0.01

Table A4 shows that mastery modeling (MM) and enactive mastery experience (EME) significantly relate to the intention to code reuse. This
finding provides empirical support for our suggestion that learning from OSS followers can explain the relationship between followership and
code reuse. Specifically, developers as followers can obtain an in-depth understanding of the OSS projects. This situation renders them
competent in applying the source codes or modular code components from their endeavoring projects in their other OSS projects. As one
interviewee (FG-3-E5) stated, “By working closely with the (OSS project) leader, I can have a clear image of the modular architecture of that
focal project. If I need, I can directly reuse the modules or source codes (from certain modules) for other OSS projects that I work on. This
really saves me a lot of effort; namely I can avoid reinventing the wheel.”

In addition, regarding EMEs, two interesting findings were also unveiled. First, EME is developed through interaction with the leaders. As
one interviewee (FG-3-H) stated, “I received the response from the leader regarding my editing in the source codes. The approval (of my
editing) conveyed the message of endorsement (of my work). Even my changes were rejected; I mostly received the comments (posted by
leaders) indicating the reasons for rejection. Such interactive activities really improved my coding capability. This feedback is a personal
instructor.” Second, EME can be cultivated through collaborative diversity, as noted by another interviewee (FG-2-C): “I can learn more
through working with different people. There are breakthrough results from diversity. I don’t think it is a good idea to constantly subordinate
myself to the same people like in my daily employment.”

The observers as followers are updated on the activities of their interested (OSS project) leaders, which helps them acquire miscellaneous
information about software development and project management. Consequently, these observers will apply this information to the other
projects. For example, an interviewee (FG-2-G) indicated, “I follow some skilled leaders of OSS projects in GitHub to learn from them. This
provides me [with] great opportunities to learn the codes they wrote and the way they managed the projects. Sometimes, I seek the codes I
need from these people’s activities.” Such an opinion is also echoed by another interviewee (FG-1-A): “Reputable people are followed to gain
trendy information.”

Interestingly, the learning cost in MM is relatively lower than that in EME. The observers can concurrently follow as many of the OSS project
leaders as they want to expand their scope of knowledge. As stated by one interviewee (FG-1-C), “I just follow those who have interesting
projects in GitHub. There is no cost for me to do so, and I may get important information for my own projects from their updates and

5FG-3-E denotes Focus Group 3, interviewee E.

A6 MIS Quarterly Vol. 43 No. 4–Appendix/December 2019

Jiang et al./Followership in an OSS Project

activities.” Theoretically, having observers does not cost the OSS project leaders. As expressed by one interviewee (FG-3-C), “the following
function in GitHub is extremely convenient and provides mutual benefits. We (observers) can easily get project-related information by
following its leader, and that leader can also rely on (leveraging) us to promote her/his project.” This comment provides descriptive
explanations for research conjecture 2.

We gain additional interesting findings from the focus group interviews. As expected, code reuse is widely prevalent in developing an OSS
project. Most interviewees agree with the following statement made by an interviewee (FG-2-E): “I directly copy the codes from one project
on which I work and paste them into another one (that I work for) .… No need to reinvent the wheel.” This opinion is also echoed by another
interviewee (FG-2-D): “GitHub is like a bazaar where I can reuse the codes from other (developing) projects.” We find that the OSS
participants hold a strong sharing mentality when they are subsequently asked to express their opinions in the activities of code reuse. An
exemplary quote (from interviewee FG-3-D), “The OSS is conducive to reducing the load of creating software from scratch. We can find
needed codes for the existing projects, and we are not penalized for doing so,” adequately corroborates the assumption of the sharing mentality
in OSS values and beliefs.

Table A5. Operationalization of the Constructs

Constructs and
Sources Items Scale

Dependent Variable

Intention to code reuse
(Fishbein and Ajzen
1975; Sheppard et al.
1988)

(1) I intend to reuse the code learned from one OSS project leader
in another OSS project.

(2) I plan to continue reusing the code learned from one OSS
project leader in another OSS project.

(3) I plan to routinely reuse the code learned from one OSS project
leader in another OSS project.

(4) I predict that I will reuse the code learned from one OSS project
leader in another OSS project.

Seven-point Likert scale
(1 = strongly disagree;
4 = neutral; 7 = strongly
agree)

Independent Variables

EME
(Self-developed)

(1) By following a particular person and contributing to her/his OSS
project in GitHub,

(2) I frequently learn from her/him.
(3) The experience I learn from her/him is not valuable for me

(reverse coded).
(4) Co-working with her/him does not help me develop my

experiences (reverse coded).

Seven-point Likert scale
(1 = strongly disagree;
4 = neutral; 7 = strongly
agree)

MM
(Bandura 1977)

(1) I am able to enrich my knowledge by noting the information
from the OSS project leaders I follow.

(2) I have developed confidence in my ability to develop my own
works by observing the information from the OSS project
leaders I follow.

(3) Gathering information from the OSS project leaders I follow has
taught me how to develop my own works.

(4) I have learned how to develop my own works better by
monitoring the OSS project leaders I follow.

Seven-point Likert scale
(1 = strongly disagree;
4 = neutral; 7 = strongly
agree)

MIS Quarterly Vol. 43 No. 4–Appendix/December 2019 A7

Jiang et al./Followership in an OSS Project

Table A5. Operationalization of the Constructs (Continued)

Constructs and
Sources Items Scale

Control Variables

Attentive observation
(Yi and Davis 2003)

(1) I have paid close attention to the news or information on
GitHub.

(2) The news or information gets my attention.
(3) I am able to take notice of the news or information on GitHub.
(4) When using GitHub, I am absorbed by the news or information

presented.

Seven-point Likert scale
(1 = strongly disagree;
4 = neutral; 7= strongly
agree)

OSS values
(Stewart and Gosain
2006)

(1) I value sharing knowledge.
(2) I believe in helping others.
(3) I place great value on technical knowledge.
(4) I am driven by a desire to learn new things.
(5) I think cooperation is important.
(6) I value the reputation gained from participating in open-source

projects.

Seven-point Likert scale
(1 = strongly disagree;
4 = neutral; 7= strongly
agree)

OSS belief
(Stewart and Gosain
2006)

(1) I believe that the best code wins out in the end.
(2) I believe free software is better than commercial software.
(3) I think information should be free.
(4) I believe that with enough people working on a project, any bug

can be quickly found and fixed.
(5) I believe that you only become a hacker when others call you a

hacker.

Seven-point Likert scale
(1= strongly disagree;
4 = neutral; 7 = strongly
agree)

Perceived importance of
code reuse/sharing
mentality/team diversity
(Self-developed)

(1) Reusing code is important for OSS projects.
(2) Sharing is the core in OSS.
(3) Cooperating with stable people across OSS projects is

preferred.

Seven-point Likert scale
(1 = strongly disagree;
4 = neutral; 7 = strongly
agree)

Tenure in GitHub How long have you used GitHub? 0: Less than 1 year
1: 1-3 years
2: 3-5 years
3: More than 5 years

OSS usage experiences How long have you used the OSS products? 0: Less than 1 year
1: 1-3 years
2: 3-5 years
3: 5-7 years
4: More than 7 years

Gender Are you ______? 0: Female, 1: Male

Age What is your age? 0: Younger than 20
years
1: 20 years to 24 years
2: 25 years to 29 years
3: 30 years to 34 years
4: 35 years to 39 years
5: 40 years to 44 years
6: 45 years to 49 years
7: 50 years and over

A8 MIS Quarterly Vol. 43 No. 4–Appendix/December 2019

Jiang et al./Followership in an OSS Project

Table A6. Coding

Codename Meaning Percentage

First Topic: Understanding Open-Source Software

Word count:
10,288
Code count:
223

1-FD Free distribution, including the reuse and redistribution of source code 32%

1-KS Knowledge sharing 29%

1-SM Social movement 15%

1-CS Cost-free software 13%

1-IP Intellectual property and licenses 10%

Second Topic: Thoughts on Code Reuse

Word count:
7,860
Code count:
168

2-SE Save efforts (by reusing the existing code) 37.5%

2-FC Efficient software development completion 32%

2-QI Improved quality of the reused code 20%

2-LB Learning through reusing (existing code) 9%

Third Topic: Dynamics in the Follower–Leader Relationship

Word count:
9,148
Code count:
198

3-DV Diversity of collaborators 31%

3-RC Reduction in communication/coordination cost 28%

3-SK Seeking qualified and updated knowledge 27%

3-AL Acquiring legitimacy 13%

References

Au, Y. A., Carpenter, D., Chen, X., and Clark, J. G. 2009. “Virtual Organizational Learning in Open Source Software Development Projects,”
Information & Management (46:1), pp. 9-5.

Bandura, A. 1977. Social Learning Theory, Englewood Cliffs, NJ: Prentice Hall.
Cohen, J.B., and Reed, A. 2006. “A Multiple Pathway Anchoring and Adjustment (MPAA) Model of Attitude Generation and Recruit-

ment,” Journal of Consumer Research, (33:1), pp. 1-15.
Faraj, S., Kudaravalli, S., and Wasko, M. 2015. “Leading Collaboration in Online Communities,” MIS Quarterly (39:2), pp. 393-411.
Fielding, R. T. 1999. “Shared Leadership in the Apache Project,” Communications of the ACM (42:4), pp. 42-43.
Fishbein, M., and Ajzen, I. 1975. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research, Reading, MA:

Addison-Wesley.
Fleming, L., and Waguespack, D. M. 2007. “Brokerage, Boundary Spanning, and Leadership in Open Innovation Communities,” Organization

Science (18:2), pp. 165-180.
Giuri, P., Rullani, F., and Torrisi, S. 2008. “Explaining Leadership in Virtual Teams: The Case of Open Source Software,” Information

Economics and Policy (20:4), pp. 305-315.
Ho, S. Y., and Richardson, A. 2013. “Trust and Distrust in Open Source Software Development,” The Journal of Computer Information

Systems (54:1), pp. 84-93.
Johnson, S. L., Safadi, H., and Faraj, S. 2015. “The Emergence of Online Community Leadership,” Information Systems Research (26:1),

pp. 165-187.
Lerner, J., and Tirole, J. 2002. “Some Simple Economics of Open Source,” The Journal of Industrial Economics (50:2), pp. 197-234.
Li, Y., Tan, C. H., and Teo, H. H. 2012. “Leadership Characteristics and Developers’ Motivation in Open Source Software Development,”

Information & Management (49:5), pp. 257-267.
O’Mahony, S., and Ferraro, F. 2007. “The Emergence of Governance in an Open Source Community,” Academy of Management

Journal (50:5), pp. 1079-1106.
McCulloch, C. E., and Neuhaus, J. M. 2001. Generalized Linear Mixed Models, Chichester, UK: John Wiley & Sons, Ltd.
Sen, R. 2007. “A Strategic Analysis of Competition Between Open Source and Proprietary Software,” Journal of Management Information

Systems (24:1), pp. 233-257.
Sheppard, B. H., Hartwick, J., and Warshaw, P. R. 1988. “The Theory of Reasoned Action: A Meta-Analysis of Past Research with

Recommendations for Modifications and Future Research,” Journal of Consumer Research (15:3), pp. 325-343.
Someren, M. V., Barnard, Y. F., and Sandberg, J. A. 1994. The Think Aloud Method: A Practical Approach to Modeling Cognitive Processes,

Waltham, MA: Academic Press.

MIS Quarterly Vol. 43 No. 4–Appendix/December 2019 A9

Jiang et al./Followership in an OSS Project

Stewart, K. J., and Gosain, S. 2006. “The Impact of Ideology on Effectiveness in Open Source Software Development Teams,” MIS Quarterly
(30:2), pp. 291-314.

Yi, M. Y., and Davis, F. D. 2003. “Developing and Validating an Observational Learning Model of Computer Software Training and Skill
Acquisition,” Information Systems Research (14:2), pp. 146-169.

A10 MIS Quarterly Vol. 43 No. 4–Appendix/December 2019

